Ion exchange membranes in electrodialysis process for wastewater treatment

No Thumbnail Available

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Chemical Engineering
(2010)
Established in 2010, and aiming to train the students with the capacity to meet the demands of the 21st Century, the Chemical Engineering Department provides a sound chemistry background through intense coursework and laboratory practices, along with fundamental courses such as Physics and Mathematics within the freshman and sophomore years, following preparatory English courses.In the final two years of the program, engineering courses are offered with laboratory practice and state-of-the-art simulation programs, combining theory with practice.

Journal Issue

Abstract

Water is the most important natural resource on earth. Survival without water is impossible and industries cannot operate without water as well. Availability of safe and reliable source of water is therefore essential. Different practical solutions are needed for sustainable preservation of water resources as freshwater resources are limited in terms of technical and economical aspects. Membrane technologies can be applied to water and wastewater treatment for removal of various unwanted substances from water. Recently, the utilization of membrane technologies in the water purification sector has grown exponentially. Compared to conventional reclamation methods, membrane technologies are much more efficient for removal of various contaminants and they are able to overcome more stringent water regulations. Membrane separation processes employed for water treatment include reverse osmosis, nanofiltration, ultrafiltration, microfiltration, and electrodialysis (ED). In this chapter, we reviewed the basic principles of electromembrane processes, such as ED, electrodeionization, electrodialysis reversal, and bipolar membrane ED based on ion exchange membranes (IEMs) along with few examples of the use of these processes in water and wastewater treatment. In addition, fouling of IEMs is also discussed. © 2024 Elsevier Inc. All rights reserved.

Description

Keywords

electrodialysis, Electromembrane process, ion exchange, membrane, water treatment

Turkish CoHE Thesis Center URL

Fields of Science

Citation

0

WoS Q

Scopus Q

Source

Current Trends and Future Developments on (Bio-) Membranes: Recent Achievements for Ion-Exchange Membranes

Volume

Issue

Start Page

123

End Page

156

Collections