Soyutlayıcı Metin Özetlemesi Derin Öğrenme Kullanarak

Loading...
Thumbnail Image

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Software Engineering
(2005)
Department of Software Engineering was founded in 2005 as the first department in Ankara in Software Engineering. The recent developments in current technologies such as Artificial Intelligence, Machine Learning, Big Data, and Blockchains, have placed Software Engineering among the top professions of today, and the future. The academic and research activities in the department are pursued with qualified faculty at Undergraduate, Graduate and Doctorate Degree levels. Our University is one of the two universities offering a Doctorate-level program in this field. In addition to focusing on the basic phases of software (analysis, design, development, testing) and relevant methodologies in detail, our department offers education in various areas of expertise, such as Object-oriented Analysis and Design, Human-Computer Interaction, Software Quality Assurance, Software Requirement Engineering, Software Design and Architecture, Software Project Management, Software Testing and Model-Driven Software Development. The curriculum of our Department is catered to graduate individuals who are prepared to take part in any phase of software development of large-scale software in line with the requirements of the software sector. Department of Software Engineering is accredited by MÜDEK (Association for Evaluation and Accreditation of Engineering Programs) until September 30th, 2021, and has been granted the EUR-ACE label that is valid in Europe. This label provides our graduates with a vital head-start to be admitted to graduate-level programs, and into working environments in European Union countries. The Big Data and Cloud Computing Laboratory, as well as MobiLab where mobile applications are developed, SimLAB, the simulation laboratory for Medical Computing, and software education laboratories of the department are equipped with various software tools and hardware to enable our students to use state-of-the-art software technologies. Our graduates are employed in software and R&D companies (Technoparks), national/international institutions developing or utilizing software technologies (such as banks, healthcare institutions, the Information Technologies departments of private and public institutions, telecommunication companies, TÜİK, SPK, BDDK, EPDK, RK, or universities), and research institutions such TÜBİTAK.

Journal Issue

Events

Abstract

Özetleri otomatik olarak üretme yeteneği, çeşitli alanlarda verimliliğin yanı sıra bilginin yayılmasını ve elde tutulmasını iyileştirmeye yardımcı olabilir. Özetleme, soyutlamacı ve çıkarıcı olmak üzere temelde iki yaklaşım vardır. Ana fikirleri yakalamak için kaynak metnin kısa bir özetini oluşturma süreci olduğu için soyutlayıcı yaklaşım daha başarılı kabul edilir. Bu yaklaşımda, kaynak metinden oluşturulan özetler, orijinal metinde yer almayan yeni ifadeler ve cümleler içerebilir. Dikkate dayalı Tekrarlayan Sinir Ağları kodlayıcı-kod çözücü modellerinin kullanımı, özetleme ve makine çevirisi dahil olmak üzere dille ilgili çeşitli görevler için popüler olmuştur. Son zamanlarda, makine çevirisi alanında, Transformer modelinin Tekrarlayan Sinir Ağları tabanlı modelden üstün olduğu kanıtlanmıştır. Bu tezde, metin özetleme için geliştiril-miş bir kodlayıcı-kod çözücü Transformer modeli öneriyoruz. Temel model olarak, soyutlayıcı metin özetleme görevi için bir Tekrarlayan Sinir Ağları modelini olan Dikkatli Uzun Kısa Süreli Bellek kullandık. Bu çalışmanın değerlendirilmesi, ROUGE puanı kullanılarak otomatik olarak yapılmıştır. Deneysel sonuçlar, Transformer modelinin daha iyi bir özet ve daha yüksek bir ROUGE puanı sağladığını göstermektedir.
The ability to produce summaries automatically helps to improve knowledge dissemination and retention, as well as efficiency in a variety of fields. There are basically two approaches to summarizing, abstractive and extractive. The abstractive approach is considered more successful as it is the process of creating a brief summary of the source text to capture the main ideas. In this approach, summaries created from the source text may contain new phrases and sentences not included in the original text. The use of attention-based Recurrent Neural Networks encoder-decoder models has been popular for a variety of language-related tasks, including summarization and machine translation. Recently, in the field of machine translation, the Transformer model has proven to be superior to the Recurrent Neural Networks -based model. In this thesis, we propose an improved encoder-decoder Transformer model for text summarization. As a baseline model, we used Long Short-Term Memory with attention, a Recurrent Neural Networks model, for the abstractive text summarization task. Evaluation of this study is performed automatically using the ROUGE score. Experimental results show that the Transformer model provides a better summary and a higher ROUGE score.

Description

Keywords

Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

67