Ses kaynak ayrıştırmasında bağımsız bileşen analizi yönteminin incelenmesi

Loading...
Thumbnail Image

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

Çalışmada, Ses kaynağı ayrıştırmada Bağımsız Bileşen Analizi metodu incelenmiştir. Bu yöntem, karışım sinyallerinde gözlenen kaynakların bilinmediği bir tür kör kaynak ayırma yöntemidir. Bilinmeyen bir karıştırma matrisi tarafından karıştırılan bağımsız sinyalleri çıkararak bir kokteyl partisi problemini çözmeye çalışıyoruz. ICA algoritmasının Gradient Ascent (ICA-GA), fastICA ve Kernel-ICA gibi bazı alt türleri vardır. Bu çalışmada ICA-GA algoritması üzerinde çalışıyoruz. Bu amaçla iki veya üç ses kaynağının birbirine karıştırıldığı farklı senaryolar incelenmiştir. Yapılan bazı testlerde ses ve gürültü sinyallerini net bir şekilde birbirinden ayırdık. Diğer testlerde ses sinyalleri ayrıldı. Deneylerde ղ (adım-boyutu) ve maksimum iterasyon sayısı parametreleri üzerinde duruldu, ayrıca parametrelerin ICA-GA algoritmasının performansı üzerindeki değeri de incelenmiştir. Kör kaynak ayırmada ICA yönteminin oldukça başarılı olduğunu elde ettik. Maksimum iterasyon parametresinin değerinin tek başına arttırılmasının performans için yeterli bir parametre olmadığı sonucuna varılmıştır. Çünkü maksimum iterasyon sayısı arttıkça algoritmanın çalışma süresi de arttığından geçen süre optimum değerde değildir. Tek başına adım büyüklüğü parametresinin değerini artırmanın algoritmanın performansı üzerinde maksimum yineleme parametresinin değerini tek başına artırmaya göre daha başarılı sonuçlar verdiğini söyleyebiliriz. Çalışma, her bir kaynak sinyalinin ve her bir çıkış sinyalinin korelasyon değerlerini kullanarak, ICA'nın çıkış sinyallerinin sırası hakkındaki belirsizliğine bir çözüm önermektedir.
In this thesis, we examine the Independent Component Analysis (ICA) method in audio source separation. This method is a type of blind source separation where the sources observed in the mixture signals are unknown. We try to solve a cocktail party problem, by extract the independent signals which are mixed by an unknown mixing matrix. There are some sub-types of the ICA algorithm such as Gradient Ascent (ICA-GA), fastICA and Kernel-ICA. In this work, we study on ICA-GA algorithm. For this purpose, different scenarios where two or three audio sources are mixed with each other, are examined. In some of the tests carried out, we separated voice and noise signals clearly from each other. In other tests, voice signals were separated. In the experiments, we focused on the ղ (step size) and the maximum iteration number parameters, also examined the value of parameters on performance of ICA-GA algorithm. We obtained that, ICA method is quiet successful in blind source separation. It was concluded that increasing the value of the maximum iteration parameter alone is not a sufficient parameter for performance. Because as the maximum number of iterations increased, the running time of the algorithm also too increased, that is, the elapsed time is not at the optimum value. We can say that, increasing the value of the step-size parameter alone has more successful results on the performance of algorithm than increasing the value of the maximum iteration parameter alone. The study recommends a solution to the ICA's ambiguity about order of output signals by using the correlation values of each source signal and each output signal.

Description

Keywords

Elektrik ve Elektronik Mühendisliği, Bağımsız bileşen analizi, Electrical and Electronics Engineering, Gürültü azaltma, Independent component analysis, Kör kaynak ayırımı, Noise reduction, Blind source seperation, Ses analizi, Voice analysis

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

66