Grafen oksit (GO) modifiye elektroeğrilmiş poli (ε-kaprolakton) (PCL) nanomalzemeler

Loading...
Thumbnail Image

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Research Projects

Organizational Units

Organizational Unit
Metallurgical and Materials Engineering
(2004)
The main fields of operation for Metallurgical and Materials Engineering are production of engineering materials, defining and improving their features, as well as developing new materials to meet the expectations at every aspect of life and the users from these aspects. Founded in 2004 and graduated its 10th-semester alumni in 2018, our Department also obtained MÜDEK accreditation in the latter year. Offering the opportunity to hold an internationally valid diploma through the accreditation in question, our Department has highly qualified and experienced Academic Staff. Many of the courses offered at our Department are supported with various practice sessions, and internship studies in summer. This way, we help our students become better-equipped engineers for their future professional lives. With the Cooperative Education curriculum that entered into effect in 2019, students may volunteer to work at contracted companies for a period of six months with no extensions to their period of study.

Journal Issue

Abstract

Çalışmanın amacı, sentetik biyobozunur polimer poli(ε-kaprolakton) (PCL) ve grafen oksit (GO) birleşiminin elektroeğrilmesiyle üç boyutlu, kompozit bir doku iskelesi elde etmektir. Ayrıca, kompozit PCL/GO yapılarının Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP) ve/veya tiyofen (Th) (PCL/GO, PCL/GO-GRGDSP, PCL/GO-Th, PCL/GO-GRGDSP-Th) ile birlikte etkileşimleri incelenmiştir. Toz GO örneklerinin karakterizasyon özellikleri ATR-FTIR ve Raman analizleri ile tayin edilmiştir. Elektroeğrilmiş doku iskelelerinin karakterizasyon özellikleri ise; kalınlık ölçümleri, taramalı elektron mikroskobu (SEM), yüzey temas açısı (CA) ölçümleri, X-ışını fotoelektron spektroskopi (XPS), termogravimetrik analiz (TGA), iletkenlik ölçümleri, PBS şişme ve büzüşme davranış testleri, in vitro degradasyon (bozunma) çalışmaları ve mekanik testleri ile yapılmıştır. Bu analizler sonucunda, bütün doku iskelelerinde eşdağılımlı homojen morfoloji gözlemlenmiştir. GO eklenmesiyle PCL/GO doku iskelelerinde daha iyi hidrofilisite ve yaklaşık 5° temas açısı düşüşü gözlenmiştir. PCL ve GO birleşimi ile elektriksel iletkenlikte artış gözlenmiş ve ölçülen en yüksek değer PCL/GO-GRGDSP-Th (2%) için bulunmuştur (15.06 μS.cm-1). Doku iskelelerinin mekanik performansı ise iyi disperse (dağılmış) olmuş GO'nun PCL matriksine eklenmesiyle artmıştır. Ayrıca, üretilen doku iskelelerinin hücre-materyal etkileşimleri MG-63 hücre hattı kullanılarak; MTT tayini, ALP aktivitesi, Alizarin red boyaması, Floresan ve SEM analizleri ile incelenmiştir. Yapılan hücre kültürü çalışmaları sonucunda, GO'nun ileri düzey özellikleri ve biyolojik arayüzleri sayesinde PCL/GO-GRGDSP-Th (0.5%) doku iskelesi en yüksek biyouyumluluk (saf PCL doku iskelesine kıyasla 1.87 kat daha fazla MTT absorbansı) göstermiştir.
The aim of this study was to fabricate 3D, composite tissue scaffolds with synthetic biodegradable polymer poly(ε-caprolactone) (PCL) and graphene oxide (GO) combined together by using electrospinning technique. Additionally, the effect of Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP) and/or thiophene (Th) modified GO on the composite PCL/GO mats (PCL/GO, PCL/GO-GRGDSP, PCL/GO-Th, PCL/GO-GRGDSP-Th) was further studied. Characterizations of the powder GO-based samples were carried out by ATR-FTIR and Raman analyses. Characterizations of the scaffolds were performed by thickness measurements, Scanning Electron Microscopy (SEM), contact angle (CA) measurements, X-ray photoelectron spectroscopy (XPS), thermogravimetric analyses (TGA), electrical conductivity tests, PBS absorption and shrinkage tests, in vitro degradation and mechanical tests. According to SEM micrographs, all of the scaffolds were exhibited bead-free and uniform morphology. Better hydrophilicity and a light CA decrease (~5°) for PCL/GO scaffolds were observed with the addition of GO. The enhanced electrical conductivity was observed with the incorporation of PCL and GO and the highest conductivity value was measured for PCL/GO-GRGDSP-Th (2%) as 15.06 μS.cm-1. Mechanical properties of the scaffolds were improved with the well-dispersion and addition of GO in PCL matrix. Additionally, cell-material interactions were studied with MG-63 osteoblast cell line with MTT assay, ALP activitiy, Alizarin-Red staining, fluorescence and SEM analyses. Cell culture studies showed that PCL/GO-GRGDSP-Th (0.5%) scaffolds exhibited highest biocompatibility performance at least 1.87 fold in MTT absorbance value compared to neat PCL scaffolds due to the advanced properties of GO and the biological interfaces.

Description

Keywords

Biyomühendislik, Bioengineering, Polimer Bilim ve Teknolojisi, Polymer Science and Technology

Turkish CoHE Thesis Center URL

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

98