Artificial Intelligence Techniques for Performance Simulation: Solid Oxide Fuel Cells V-J Curve Prediction Via Artificial Neural Networks

dc.authorscopusid 56768032000
dc.authorscopusid 8686981900
dc.authorscopusid 35580424400
dc.authorscopusid 24467662400
dc.authorscopusid 57205219023
dc.contributor.author Baldinelli,A.
dc.contributor.author Barelli,L.
dc.contributor.author Bidini,G.
dc.contributor.author Bonucci,F.
dc.contributor.author Iskenderoğlu,F.C.
dc.date.accessioned 2024-10-06T11:15:51Z
dc.date.available 2024-10-06T11:15:51Z
dc.date.issued 2017
dc.department Atılım University en_US
dc.department-temp Baldinelli A., Dipartimento di Ingegneria, Università degli Studi di Perugia, Via Duranti 93, Perugia, Italy; Barelli L., Dipartimento di Ingegneria, Università degli Studi di Perugia, Via Duranti 93, Perugia, Italy; Bidini G., Dipartimento di Ingegneria, Università degli Studi di Perugia, Via Duranti 93, Perugia, Italy; Bonucci F., VGA S.r.l, Via dell'Innovazione, Deruta, Italy; Iskenderoğlu F.C., Atılım University University, Ankara, Turkey en_US
dc.description Consiglio Nazionale delle Ricerche; ITAE; The Bioelectrochemical Society (BES) en_US
dc.description.abstract For their high flexibility of operation, Solid oxide fuel cells (SOFCs) are promising candidates to coach the transition towards cleaner and efficient energy generation. Yet, SOFC performance might be markedly affected by fuel composition variability and operative parameters. For that, a reliable simulation tool is necessary for SOFC performance, to optimize its working point and to provide a suitable control. Given the high variability ascribed to the fuel and the electrochemical system high nonlinearity, the implementation of artificial intelligence techniques, like Artificial Neural Networks (ANNs), is worth considering. In ANNs, the correlation between system inputs and outputs is handled by virtual neurons, establishing in-out correlations without entering in knotty kinetics and material properties issues. For what above, a suitably sized experimental campaign is to be designed to provide a large data-set. This to guarantee high ANN performance in the voltage estimation and, at the same time, a wide application domain of the neural simulator. © EFC 2017 - Proceedings of the 7th European Fuel Cell Piero Lunghi Conference. en_US
dc.identifier.citationcount 0
dc.identifier.endpage 100 en_US
dc.identifier.isbn 978-888286324-1
dc.identifier.scopus 2-s2.0-85173569758
dc.identifier.startpage 99 en_US
dc.identifier.uri https://hdl.handle.net/20.500.14411/9469
dc.language.iso en en_US
dc.publisher ENEA en_US
dc.relation.ispartof EFC 2017 - Proceedings of the 7th European Fuel Cell Piero Lunghi Conference -- 7th European Fuel Cell Piero Lunghi Conference, EFC 2017 -- 12 December 2017 through 15 December 2017 -- Naples -- 192480 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Artificial Neural Networks en_US
dc.subject Control algorithms en_US
dc.subject Low-carbon fuels en_US
dc.subject Simulation en_US
dc.subject Solid Oxide Fuel Cells en_US
dc.title Artificial Intelligence Techniques for Performance Simulation: Solid Oxide Fuel Cells V-J Curve Prediction Via Artificial Neural Networks en_US
dc.type Conference Object en_US
dspace.entity.type Publication

Files

Collections