ARTIFICIAL INTELLIGENCE TECHNIQUES FOR PERFORMANCE SIMULATION: SOLID OXIDE FUEL CELLS V-J CURVE PREDICTION VIA ARTIFICIAL NEURAL NETWORKS

dc.authorscopusid56768032000
dc.authorscopusid8686981900
dc.authorscopusid35580424400
dc.authorscopusid24467662400
dc.authorscopusid57205219023
dc.contributor.authorBaldinelli,A.
dc.contributor.authorBarelli,L.
dc.contributor.authorBidini,G.
dc.contributor.authorBonucci,F.
dc.contributor.authorIskenderoğlu,F.C.
dc.date.accessioned2024-10-06T11:15:51Z
dc.date.available2024-10-06T11:15:51Z
dc.date.issued2017
dc.departmentAtılım Universityen_US
dc.department-tempBaldinelli A., Dipartimento di Ingegneria, Università degli Studi di Perugia, Via Duranti 93, Perugia, Italy; Barelli L., Dipartimento di Ingegneria, Università degli Studi di Perugia, Via Duranti 93, Perugia, Italy; Bidini G., Dipartimento di Ingegneria, Università degli Studi di Perugia, Via Duranti 93, Perugia, Italy; Bonucci F., VGA S.r.l, Via dell'Innovazione, Deruta, Italy; Iskenderoğlu F.C., Atılım University University, Ankara, Turkeyen_US
dc.descriptionConsiglio Nazionale delle Ricerche; ITAE; The Bioelectrochemical Society (BES)en_US
dc.description.abstractFor their high flexibility of operation, Solid oxide fuel cells (SOFCs) are promising candidates to coach the transition towards cleaner and efficient energy generation. Yet, SOFC performance might be markedly affected by fuel composition variability and operative parameters. For that, a reliable simulation tool is necessary for SOFC performance, to optimize its working point and to provide a suitable control. Given the high variability ascribed to the fuel and the electrochemical system high nonlinearity, the implementation of artificial intelligence techniques, like Artificial Neural Networks (ANNs), is worth considering. In ANNs, the correlation between system inputs and outputs is handled by virtual neurons, establishing in-out correlations without entering in knotty kinetics and material properties issues. For what above, a suitably sized experimental campaign is to be designed to provide a large data-set. This to guarantee high ANN performance in the voltage estimation and, at the same time, a wide application domain of the neural simulator. © EFC 2017 - Proceedings of the 7th European Fuel Cell Piero Lunghi Conference.en_US
dc.identifier.citation0
dc.identifier.doi[SCOPUS-DOI-BELIRLENECEK-106]
dc.identifier.endpage100en_US
dc.identifier.isbn978-888286324-1
dc.identifier.scopus2-s2.0-85173569758
dc.identifier.scopusqualityN/A
dc.identifier.startpage99en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14411/9469
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherENEAen_US
dc.relation.ispartofEFC 2017 - Proceedings of the 7th European Fuel Cell Piero Lunghi Conference -- 7th European Fuel Cell Piero Lunghi Conference, EFC 2017 -- 12 December 2017 through 15 December 2017 -- Naples -- 192480en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectControl algorithmsen_US
dc.subjectLow-carbon fuelsen_US
dc.subjectSimulationen_US
dc.subjectSolid Oxide Fuel Cellsen_US
dc.titleARTIFICIAL INTELLIGENCE TECHNIQUES FOR PERFORMANCE SIMULATION: SOLID OXIDE FUEL CELLS V-J CURVE PREDICTION VIA ARTIFICIAL NEURAL NETWORKSen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files

Collections