Kayıp verilerin tamamlanması için bir hibrit model

Loading...
Thumbnail Image

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Information Systems Engineering
Information Systems is an academic and professional discipline which follows data collection, utilization, storage, distribution, processing and management processes and modern technologies used in this field. Our department implements a pioneering and innovative education program that aims to raise the manpower, able to meet the changing and developing needs and expectations of our country and the world. Our courses on current information technologies especially stand out.

Journal Issue

Abstract

Eksik veriler neredeyse tüm ciddi istatistiksel analizlerde ortaya çıkmaktadır. İstatistiksel analizler, eksik verileri işlemek için, rastgele değerlendirme yaklaşımı gibi genellikle makul sonuçlar verebilecek bazı basit yaklaşımlar da dahil olmak üzere çeşitli yöntemlere sahiptir. Eksik veri değerlendirme süreci, doğru tamamlamalar yapabilmek için modellenmelidir. Veri setlerini ampirik uygulamalarda kullanmak bazı görevleri gerçekleştirmek için çok yaygındır, ancak veri setlerindeki eksik değerler veri setlerinden çıkarılmalı ya da veri madenciliğinin ön işleme aşamasında tahmin edilmelidir. Bu tezde, veri algılamasını iyileştirmek ve orijinal eksik değerlerle yüksek korelasyonlu veri üretmek için K-En Yakın Komşu (KNN) ile Tekil Değer Ayrıştırma (SVD) algoritmasını birleştiren bir karma yaklaşım kullanılmaktadır. Önerilen hibrit yöntemin test sonuçları, farklı kayıp değerlerin oranı için çeşitli alternatif yöntemlerin sonuçlarıyla karşılaştırılmış ve önerilen yöntemin performansı diğerlerinden daha iyi çıkmıştır. Ayrıca sonuçlar, önerilen modelin performansı hakkında bir fikir vermesi amacıyla literatürdeki raporlanan diğer sonuçlarla da karşılaştırılmıştır. Anahtar Kelimeler: Hibrit yaklaşım, Kayıp değerler, K-en yakın komşu, Tekil Değer Ayrışımı.
Missing data arises in almost all serious statistical analyses. Statistical analyses have a variety of methods to handle missing data, including some relatively simple approaches that can often yield reasonable results such as the random imputation approach. The missing data imputation process must be modeled in order to perform imputations correctly. Using datasets in empirical applications is very common to perform some tasks; however, missing values in datasets should be extracted from the datasets or should be estimated before they are used for processing to produce correct association rules or clustering in the preprocessing stage of data mining and processing. In this thesis, a hybrid approach is used that combines K-Nearest Neighbor (KNN) with Singular Value Decomposition (SVD) algorithm to improve the data imputation and produce data with high correlation with original missing values. The test results of the proposed hybrid method are compared with the results of several alternative methods for different rate of missing values and the results of the proposed method yields better performance than the others. The results are also compared with the reported results in the literature to give an idea about its performance. Hybrid approach, Missing values, K-nearest Neighbour, Singular Value Decomposition.

Description

Keywords

Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

76