MOVES ON CURVES ON NONORIENTABLE SURFACES

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Rocky Mt Math Consortium

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Mathematics
(2000)
The Atılım University Department of Mathematics was founded in 2000 and it offers education in English. The Department offers students the opportunity to obtain a certificate in Mathematical Finance or Cryptography, aside from their undergraduate diploma. Our students may obtain a diploma secondary to their diploma in Mathematics with the Double-Major Program; as well as a certificate in their minor alongside their diploma in Mathematics through the Minor Program. Our graduates may pursue a career in academics at universities, as well as be hired in sectors such as finance, education, banking, and informatics. Our Department has been accredited by the evaluation and accreditation organization FEDEK for a duration of 5 years (until September 30th, 2025), the maximum FEDEK accreditation period achievable. Our Department is globally and nationally among the leading Mathematics departments with a program that suits international standards and a qualified academic staff; even more so for the last five years with our rankings in the field rankings of URAP, THE, USNEWS and WEBOFMETRIC.

Journal Issue

Abstract

Let Ng,n denote a nonorientable surface of genus g with n punctures and one boundary component. We give an algorithm to calculate the geometric intersection number of an arbitrary multicurve d. with so-called relaxed curves in Ng,n making use of measured n1-train tracks. The algorithm proceeds by the repeated application of three moves which take as input the measures of d. and produces as output a multicurve d.' which is minimal with respect to each of the relaxed curves. The last step of the algorithm calculates the number of intersections between d.' and the relaxed curves.

Description

Keywords

geometric intersection, multicurves, ? 1-train tracks

Turkish CoHE Thesis Center URL

Fields of Science

Citation

0

WoS Q

Q3

Scopus Q

Source

Volume

52

Issue

6

Start Page

1957

End Page

1967

Collections