Attitude Control of Quad-Copter Using Deterministic Policy Gradient Algorithms (dpga)

dc.authorscopusid 57208423247
dc.authorscopusid 57213077799
dc.authorscopusid 57208212476
dc.authorscopusid 57204287630
dc.authorscopusid 57209876827
dc.contributor.author Ghouri,U.H.
dc.contributor.author Zafar,M.U.
dc.contributor.author Bari,S.
dc.contributor.author Khan,H.
dc.contributor.author Khan,M.U.
dc.contributor.other Mechatronics Engineering
dc.date.accessioned 2024-07-05T15:45:21Z
dc.date.available 2024-07-05T15:45:21Z
dc.date.issued 2019
dc.department Atılım University en_US
dc.department-temp Ghouri U.H., Dept. of Mechatronics Engineering, Air University, Islamabad, Pakistan; Zafar M.U., Dept. of Mechatronics Engineering, Air University, Islamabad, Pakistan; Bari S., Dept. of Mechatronics Engineering, Air University, Islamabad, Pakistan; Khan H., Dept. of Mechatronics Engineering, Air University, Islamabad, Pakistan; Khan M.U., Dept. of Mechatronics Engineering, Atilim University, Ankara, Turkey en_US
dc.description.abstract In aerial robotics, intelligent control has been a buzz for the past few years. Extensive research efforts can be witnessed to produce control algorithms for stable flight operation of aerial robots using machine learning. Supervised learning has the tendency but training an agent using supervised learning can be a tedious task. Moreover, the data gathering could be expensive and always prone to inaccuracies due to parametric variations and system dynamics. An alternative approach is to ensure the stability of the aerial robots with the help of Deep Re-inforcement Learning (DRL). This paper deals with the intelligent control of quad-copter using deterministic policy gradient algorithms. In this research, state of the art Deep Deterministic Policy Gradient (DDPG) and Distributed Distributional Deep Deterministic Policy Gradient (D4PG) algorithms are employed for attitude control of quad-copter. An open source simulation environment GymFC is used for training of quad-copter. The results for comparative analysis of DDPG D4PG algorithms are also presented, highlighting the attitude control performance. © 2019 IEEE. en_US
dc.identifier.citationcount 5
dc.identifier.doi 10.1109/C-CODE.2019.8681003
dc.identifier.endpage 153 en_US
dc.identifier.isbn 978-153869609-5
dc.identifier.scopus 2-s2.0-85064769285
dc.identifier.startpage 149 en_US
dc.identifier.uri https://doi.org/10.1109/C-CODE.2019.8681003
dc.identifier.uri https://hdl.handle.net/20.500.14411/3905
dc.institutionauthor Khan, Muhammad Umer
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof 2019 2nd International Conference on Communication, Computing and Digital Systems, C-CODE 2019 -- 2nd International Conference on Communication, Computing and Digital Systems, C-CODE 2019 -- 6 March 2019 through 7 March 2019 -- Islamabad -- 146997 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 6
dc.subject D4PG en_US
dc.subject DDPG en_US
dc.subject Deep reinforcement learning en_US
dc.subject GymFC en_US
dc.subject Quad-copter control en_US
dc.title Attitude Control of Quad-Copter Using Deterministic Policy Gradient Algorithms (dpga) en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication e2e22115-4c8f-46cc-bce9-27539d99955e
relation.isAuthorOfPublication.latestForDiscovery e2e22115-4c8f-46cc-bce9-27539d99955e
relation.isOrgUnitOfPublication cfebf934-de19-4347-b1c4-16bed15637f7
relation.isOrgUnitOfPublication.latestForDiscovery cfebf934-de19-4347-b1c4-16bed15637f7

Files

Collections