Attitude Control of Quad-copter using Deterministic Policy Gradient Algorithms (DPGA)

dc.authorscopusid57208423247
dc.authorscopusid57213077799
dc.authorscopusid57208212476
dc.authorscopusid57204287630
dc.authorscopusid57209876827
dc.contributor.authorGhouri,U.H.
dc.contributor.authorZafar,M.U.
dc.contributor.authorBari,S.
dc.contributor.authorKhan,H.
dc.contributor.authorKhan,M.U.
dc.contributor.otherMechatronics Engineering
dc.date.accessioned2024-07-05T15:45:21Z
dc.date.available2024-07-05T15:45:21Z
dc.date.issued2019
dc.departmentAtılım Universityen_US
dc.department-tempGhouri U.H., Dept. of Mechatronics Engineering, Air University, Islamabad, Pakistan; Zafar M.U., Dept. of Mechatronics Engineering, Air University, Islamabad, Pakistan; Bari S., Dept. of Mechatronics Engineering, Air University, Islamabad, Pakistan; Khan H., Dept. of Mechatronics Engineering, Air University, Islamabad, Pakistan; Khan M.U., Dept. of Mechatronics Engineering, Atilim University, Ankara, Turkeyen_US
dc.description.abstractIn aerial robotics, intelligent control has been a buzz for the past few years. Extensive research efforts can be witnessed to produce control algorithms for stable flight operation of aerial robots using machine learning. Supervised learning has the tendency but training an agent using supervised learning can be a tedious task. Moreover, the data gathering could be expensive and always prone to inaccuracies due to parametric variations and system dynamics. An alternative approach is to ensure the stability of the aerial robots with the help of Deep Re-inforcement Learning (DRL). This paper deals with the intelligent control of quad-copter using deterministic policy gradient algorithms. In this research, state of the art Deep Deterministic Policy Gradient (DDPG) and Distributed Distributional Deep Deterministic Policy Gradient (D4PG) algorithms are employed for attitude control of quad-copter. An open source simulation environment GymFC is used for training of quad-copter. The results for comparative analysis of DDPG D4PG algorithms are also presented, highlighting the attitude control performance. © 2019 IEEE.en_US
dc.identifier.citation5
dc.identifier.doi10.1109/C-CODE.2019.8681003
dc.identifier.endpage153en_US
dc.identifier.isbn978-153869609-5
dc.identifier.scopus2-s2.0-85064769285
dc.identifier.startpage149en_US
dc.identifier.urihttps://doi.org/10.1109/C-CODE.2019.8681003
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3905
dc.institutionauthorKhan, Muhammad Umer
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2019 2nd International Conference on Communication, Computing and Digital Systems, C-CODE 2019 -- 2nd International Conference on Communication, Computing and Digital Systems, C-CODE 2019 -- 6 March 2019 through 7 March 2019 -- Islamabad -- 146997en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectD4PGen_US
dc.subjectDDPGen_US
dc.subjectDeep reinforcement learningen_US
dc.subjectGymFCen_US
dc.subjectQuad-copter controlen_US
dc.titleAttitude Control of Quad-copter using Deterministic Policy Gradient Algorithms (DPGA)en_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicatione2e22115-4c8f-46cc-bce9-27539d99955e
relation.isAuthorOfPublication.latestForDiscoverye2e22115-4c8f-46cc-bce9-27539d99955e
relation.isOrgUnitOfPublicationcfebf934-de19-4347-b1c4-16bed15637f7
relation.isOrgUnitOfPublication.latestForDiscoverycfebf934-de19-4347-b1c4-16bed15637f7

Files

Collections