The Approximation of Power Function by the <i>q</I>-bernstein Polynomials in the Case <i>q</I> > 1
| dc.contributor.author | Ostrovska, Sofiya | |
| dc.contributor.other | Mathematics | |
| dc.contributor.other | 02. School of Arts and Sciences | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-10-06T10:57:52Z | |
| dc.date.available | 2024-10-06T10:57:52Z | |
| dc.date.issued | 2008 | |
| dc.description.abstract | Since for q > 1. q-Bernstein polynomials are not positive linear operators on C[0, 1] the investigation of their convergence properties turns out to be much more difficult than that in the case 0 < q < 1. It is known that, in the case q > 1. the q-Bernstein polynomials approximate the entire functions and, in particular, polynomials uniformly on any compact set in C. In this paper. the possibility of the approximation for the function (z + a)(alpha), a >= 0. with a non-integer alpha > -1 is studied. It is proved that for a > 0, the function is uniformly approximated on any compact set in {z : vertical bar z vertical bar < a}, while on any Jordan arc in {z : vertical bar z vertical bar > a}. the uniform approximation is impossible, In the case a = 0(1) the results of the paper reveal the following interesting phenomenon: the power function z(alpha), alpha > 0: is approximated by its, q-Bernstein polynomials either on any (when alpha is an element of N) or no (when alpha is not an element of N) Jordan arc in C. | en_US |
| dc.identifier.issn | 1331-4343 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/8803 | |
| dc.language.iso | en | en_US |
| dc.publisher | Element | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | q-integers | en_US |
| dc.subject | q-binomial coefficients | en_US |
| dc.subject | q-Bernstein polynomials | en_US |
| dc.subject | uniform convergence | en_US |
| dc.title | The Approximation of Power Function by the <i>q</I>-bernstein Polynomials in the Case <i>q</I> > 1 | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Ostrovska, Sofiya | |
| gdc.author.wosid | Ostrovska, Sofiya/AAA-2156-2020 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | Atilim Univ, Dept Math, TR-06836 Ankara, Turkey | en_US |
| gdc.description.endpage | 597 | en_US |
| gdc.description.issue | 3 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 585 | en_US |
| gdc.description.volume | 11 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.wos | WOS:000257877600019 | |
| gdc.wos.citedcount | 2 | |
| relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
| relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | 9fc70983-6166-4c9a-8abd-5b6045f7579d | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |