The Approximation of Power Function by the <i>q</I>-bernstein Polynomials in the Case <i>q</I> &gt; 1

dc.authorwosid Ostrovska, Sofiya/AAA-2156-2020
dc.contributor.author Ostrovska, Sofiya
dc.contributor.other Mathematics
dc.date.accessioned 2024-10-06T10:57:52Z
dc.date.available 2024-10-06T10:57:52Z
dc.date.issued 2008
dc.department Atılım University en_US
dc.department-temp Atilim Univ, Dept Math, TR-06836 Ankara, Turkey en_US
dc.description.abstract Since for q > 1. q-Bernstein polynomials are not positive linear operators on C[0, 1] the investigation of their convergence properties turns out to be much more difficult than that in the case 0 < q < 1. It is known that, in the case q > 1. the q-Bernstein polynomials approximate the entire functions and, in particular, polynomials uniformly on any compact set in C. In this paper. the possibility of the approximation for the function (z + a)(alpha), a >= 0. with a non-integer alpha > -1 is studied. It is proved that for a > 0, the function is uniformly approximated on any compact set in {z : vertical bar z vertical bar < a}, while on any Jordan arc in {z : vertical bar z vertical bar > a}. the uniform approximation is impossible, In the case a = 0(1) the results of the paper reveal the following interesting phenomenon: the power function z(alpha), alpha > 0: is approximated by its, q-Bernstein polynomials either on any (when alpha is an element of N) or no (when alpha is not an element of N) Jordan arc in C. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 2
dc.identifier.endpage 597 en_US
dc.identifier.issn 1331-4343
dc.identifier.issue 3 en_US
dc.identifier.scopusquality Q2
dc.identifier.startpage 585 en_US
dc.identifier.uri https://hdl.handle.net/20.500.14411/8803
dc.identifier.volume 11 en_US
dc.identifier.wos WOS:000257877600019
dc.identifier.wosquality Q2
dc.institutionauthor Ostrovska, Sofiya
dc.language.iso en en_US
dc.publisher Element en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject q-integers en_US
dc.subject q-binomial coefficients en_US
dc.subject q-Bernstein polynomials en_US
dc.subject uniform convergence en_US
dc.title The Approximation of Power Function by the <i>q</I>-bernstein Polynomials in the Case <i>q</I> &gt; 1 en_US
dc.type Article en_US
dc.wos.citedbyCount 2
dspace.entity.type Publication
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscovery af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections