Mikroşekillendirme analizi: Mikromekanik ve sayısal yönleri

Loading...
Thumbnail Image

Date

2007

Journal Title

Journal ISSN

Volume Title

Publisher

Research Projects

Organizational Units

Organizational Unit
Department of Mechatronics Engineering
Our purpose in the program is to educate our students for contributing to universal knowledge by doing research on contemporary mechatronics engineering problems and provide them with design, production and publication skills. To reach this goal our post graduate students are offered courses in various areas of mechatronics engineering, encouraged to do research to develop their expertise and their creative side, as well as develop analysis and design skills.
Organizational Unit
Manufacturing Engineering
(2003)
Opened in 2003 with the aim to graduate experts in the field of machine-production, our Department is among the firsts in our country to offer education in English. The Manufacturing Engineering program focuses on the manufacturing technologies that shape materials from raw materials to final products by means of analytical, experimental and numerical modeling methods. First Manufacturing Engineering Program to be engineered by Müdek, our department aims to graduate creative and innovative Manufacturing Engineers that are knowledgeable in the current technology, and are able to use production resources in an effective and sustainable way that never disregards environmental facts. As the first Department to implement the Cooperative Education Program at Atılım University in coordination with institutions from the industry, the Manufacturing Engineering offers a practice-oriented approach in education with its laboratory infrastructure and research opportunities. The curriculum at our department is supported by current engineering software, and catered to creating engineers equipped to meet the needs of the production industry.

Journal Issue

Abstract

Artan elektronik ve mikromekanik parcaların piyasa hacmi donanımların daha yogun islevsellik kazanmalarına ve kuculmelerine yol acmaktadır. Talepleri karsılamak icin mikro-parcaların uretim yontemlerinin tasarımı hem uygulamalı ve hem de analitik olarak arastırılmalıdır. Bu tez mikro-¸sekillendirmenin analitik olarak arastırılmasına katkıda bulunmak icin hazırlanmıstır. Mikro-¸sekillendirme yontemlerinin sonlu elemanlar yontemi ile simulasyonu icin basitlestirilmis bir modelleme yaklasımı onerilmistir. Yeni modelleme yaklasımı boyut etkileri diye adlandırılan geleneksel sekillendirme ve mikro-¸sekillendirme arasındaki farkları acıklamayı hedefler. Azalan is parcası ebat olcegi nedeniyle olusan boyut etkileri malzemenin homojen olmayan tanecik yapısı ile acıklanmıstır. Sonucta sonlu elemanlar yontemi simulasyonu icin onerilen yaklasım, malzemeyi anisotropik mekanik ozelliklere sahip bireysel tanecikler olarak modellemektir. Taneciklerin yonsel tepkileri Hill'in anizotropik malzeme modeli ile temsil edilmistir. Uc mumkun malzeme modeli (izotropik, tek tanecik, ¸coklu tanecik) ile 2 ve 3 boyutlu yaygın sekillendirme yontemlerinin sim¨ulasyonları yapılmı¸stır ve literat¨ur ile kar¸sıla¸stırılmı¸stır. Dahası, konsept bir mikro-¸sekillendirme presi i¸ceren bir deney duzenegi tasarlanmı¸stır. Anahtar sozcukler : Mikro-¸sekillendirme, Geleneksel ¸sekillendirme, Boyut etkileri, Hill'in anizotropik malzeme modeli, Sonlu elemanlar y¨ontemi.
The increasing market volume of electronic and micromechanical components makes a general trend towards higher integrated functional density and miniaturization of equipments. In order to meet the demands, design of the production processes of micro-parts should be investigated both practically and analytically. This thesis is prepared to contribute the analytical investigation of microforming. A simplified modeling approach is proposed for the Finite Element Method (FEM) simulation of microforming processes. The new modeling approach aims to explain the differences between conventional forming and microforming which are termed as size effects. The size effects due to the decreasing scale of the workpiece size, is explained in terms of inhomogeneous grain structure of the material. Therefore the proposed approach for the FEM simulation is modeling the material as individual grains which possess anisotropic mechanical properties. The directional response of the grains is represented by Hill?s anisotropic material model. 2D and 3D simulations of common forming processes were performed with the three possible material models (isotropic, single grain, multi-grain) and compared with the literature. Moreover, an experimental setup including a conceptual microforming press is designed. Keywords: Microforming, Conventional forming, Size effects, Hill?s anisotropy, Finite Element Method.

Description

Keywords

Makine Mühendisliği, Mechanical Engineering

Turkish CoHE Thesis Center URL

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

138