Comparison of the Membrane-based Desorber and Plate Heat Exchanger Desorber for Solar Assisted Absorption Refrigeration Systems

No Thumbnail Available

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Toronto Metropolitan University

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Automotive Engineering
(2009)
Having started education in 2009, the Atılım university Department of Automotive Engineering offers an academic environment at international standards, with its education in English, a contemporary curriculum and ever-better and ever-developing laboratory opportunities. In addition to undergraduate degree education, the graduate program of multi-disciplinary mechanical engineering offers the opportunity for graduate and doctorate degree education automotive engineering. The Atılım University Automotive Engineering has been selected to be the best in Turkey in 2020 in the field of automotive engineering with studies in energy efficiency, motor performance, active/ passive automotive security and vehicle dynamics conducted in the already-existing laboratories of its own. Our graduates are employed at large-scale companies that operate in Turkey, such as Isuzu, Ford Otosan, Hattat, Honda, Hyundai, Karsan, Man, Mercedes-Benz, Otokar, Renault, Temsa, Tofaş, Toyota, Türk Traktör, Volkswagen (to start operation in 2020). In addition, our graduates have been hired at institutions such as Tübitak, Tai, Aselsan, FNSS, Ministry of National Defence, Tcdd etc. or at supplier industries in Turkey. Due to the recent evolution undergone by the automotive industry with the development of electric, hybrid and autonomous vehicle technologies, automotive engineering has gained popularity, and is becoming ever more exhilarating. In addition to combustion engine technologies, our students also gain expertise in these fields. The “Formula Student Car” contest organized since 2011 by the Society of Automotive Engineers (SAE) where our Department ranked third globally in 2016 is one of the top projects conducted by our department where we value hands-on training. Our curriculum, updated in 2020, focuses on computer calculation and simulation courses, as well as laboratory practice, catered to modern automotive technologies.

Journal Issue

Abstract

The Absorption Refrigeration System (ARS) is a type of cooling system that uses non-toxic, non-volatile, and nonflammable working fluids. The system includes a pump and a heat exchanger for the molten solution, in addition to evaporator and condenser components found in a vapor compression refrigeration cycle. Instead of using a compressor, a thermal mechanism such as solar or geothermal energy is utilized for circulation, resulting in significant energy savings. Although generally it is used in large industrial applications, the use of membrane technology in the absorber and/or desorber makes it suitable for residential applications due to the large area-to-volume ratios of the resulting components. In this study, the numerical investigation of the membrane-based desorber, which is known to have the highest COP for the ARS, is performed. Working fluid is H2O–LiBr solution. The pore diameter of microporous polytetraphluoroethylene (PTFE) membrane is 0.45 μm and thickness is 200 μm that is used to separate the solution from the vapour. The results for two type desorbers obtained for hot water and solution heat transfer coefficients, COP, volumetric cooling effect and cooling power are provided and compared to each other. © 2023, Toronto Metropolitan University. All rights reserved.

Description

Keywords

Absorption refrigeration system (ARS), membrane-based desorber, microchannel

Turkish CoHE Thesis Center URL

Fields of Science

Citation

0

WoS Q

N/A

Scopus Q

Q4

Source

International Conference on Thermal Engineering -- 14th International Conference on Thermal Engineering: Theory and Applications, ICTEA 2023 -- 25 May 2023 through 27 May 2023 -- Yalova -- 306049

Volume

2023

Issue

1

Start Page

End Page

Collections