Control of a Helicopter During Autorotation

No Thumbnail Available

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Vertical Flight Society

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Airframe and Powerplant Maintenance
(2012)
The Atılım University Department of Airframe and Powerplant Maintenance has been offering Civil Aviation education in English since 2012. In an effort to provide the best level of education, ATILIM UNIVERSITY demonstrated its merit as a role model in Civil Aviation Education last year by being granted a SHY 147 certificate with the status of “Approved Aircraft Maintenance Training Institution” by the General Directorate of Civil Aviation. The SHY 147 is a certificate for Approved Aircraft Maintenance Training Institutions. It is granted to institutions where training programs have undergone inspection, and the quality of the education offered has been approved by the General Directorate of Civil Aviation. With our Civil Aviation Training Center at Esenboğa Airport (our hangar), and the two Cessna-337 planes with double piston engines both of which are fully operational, as well our Beechcraft C90 Kingait plaine with double Turboprop engines, Atılım University is an institution to offer hands-on technical training in civil aviation, and one that strives to take the education it offers to the extremes in terms of technology. The Atılım university Graduate School Department of Airframe and Powerplant Maintenance is a fully-equipped civil aviation school to complement its theoretical education with hands-on training using planes of various kinds. Even before their graduation, most of our students are hired in Turkey’s most prestigious institutions in such a rapidly-developing sector. We are looking forward to welcoming you at this modern and contemporary institution for your education in civil aviation.

Journal Issue

Events

Abstract

This paper demonstrates an autonomous autorotation controller, which is developed and implemented to a real-time high-fidelity mathematical model of a full-scale light utility helicopter. For developing the autonomous autorotation controller that consists of a standard inner-outer loop architecture, full linear and reduced order linear models, which are obtained around different trim points, are utilized. Inner loops are used for stabilizing the helicopter as well as for holding attitude, heading and speed of the helicopter. While designing the outermost loop, autorotation maneuver is divided into five different phases (steady state descent, preflare, flare, landing and touchdown) and different controllers are developed for each of these phases. Collective commands generated from these controllers are blended using fuzzy transitions. Comparison results of non-linear and linearized models are presented together with details of control law formation. For assessing performance of the autorotation controller, real-time simulation results of integrated high-fidelity model are provided. Results demonstrate the capability of the proposed controller for achieving safe power-off landings. © 2019 The Vertical Flight Society. All rights reserved.

Description

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

7th Asian/Australian Rotorcraft Forum, ARF 2018 -- 7th Asian/Australian Rotorcraft Forum, ARF 2018 -- 30 October 2018 through 1 November 2018 -- Seogwipo City, Jeju Island -- 150700

Volume

Issue

Start Page

End Page

Collections