Recurrent Neural Networks for Spam E-Mail Classification on an Agglutinative Language

dc.contributor.author Işik,S.
dc.contributor.author Kurt,Z.
dc.contributor.author Anagun,Y.
dc.contributor.author Ozkan,K.
dc.contributor.other Computer Engineering
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:45:56Z
dc.date.available 2024-07-05T15:45:56Z
dc.date.issued 2020
dc.description.abstract In this study, we have provided an alternative solution to spam and legitimate email classification problem. The different deep learning architectures are applied on two feature selection methods, including the Mutual Information (MI) and Weighted Mutual Information (WMI). Firstly, feature selection methods including WMI and MI are applied to reduce number of selected terms. Secondly, the feature vectors are constructed with concept of the bag-of-words (BoW) model. Finally, the performance of system is analyzed with using Artificial Neural Network (ANN), Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term Memory (BILSTM) models. After experimental simulations, we have observed that there is a competition between detection results of using WMI and MI when commented with accuracy rates for the agglutinative language, namely Turkish. The experimental scores show that the LSTM and BILSTM give 100% accuracy scores when combined with MI or WMI, for spam and legitimate emails. However, for particular cross-validation, the performance WMI is higher than MI features in terms e-mail grouping. It turns out that WMI and MI with deep learning architectures seem more robust to spam email detection when considering the high detection scores. © 2020, Ismail Saritas. All rights reserved. en_US
dc.identifier.doi 10.18201/ijisae.2020466316
dc.identifier.issn 2147-6799
dc.identifier.scopus 2-s2.0-85100155779
dc.identifier.uri https://doi.org/10.18201/ijisae.2020466316
dc.identifier.uri https://hdl.handle.net/20.500.14411/3986
dc.language.iso en en_US
dc.publisher Ismail Saritas en_US
dc.relation.ispartof International Journal of Intelligent Systems and Applications in Engineering en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject LSTM en_US
dc.subject Mutual information en_US
dc.subject Odds ratio en_US
dc.subject RNN en_US
dc.subject Spam E-mail en_US
dc.title Recurrent Neural Networks for Spam E-Mail Classification on an Agglutinative Language en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Kurt, Zühal
gdc.author.scopusid 56247318100
gdc.author.scopusid 55806648900
gdc.author.scopusid 55293387500
gdc.author.scopusid 15081108900
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Işik S., Computer Eng, Eskisehir Osmangazi University, Eskisehir, Turkey; Kurt Z., Computer Eng, Atılım University, Ankara, Turkey; Anagun Y., Computer Eng, Eskisehir Osmangazi University, Eskisehir, Turkey; Ozkan K., Computer Eng, Eskisehir Osmangazi University, Eskisehir, Turkey en_US
gdc.description.endpage 227 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 221 en_US
gdc.description.volume 8 en_US
gdc.identifier.openalex W3114971356
gdc.openalex.fwci 2.399
gdc.openalex.normalizedpercentile 0.95
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 11
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 17
gdc.plumx.scopuscites 12
gdc.scopus.citedcount 12
relation.isAuthorOfPublication c1644357-fb5e-46b5-be18-1dd9b8e84e2e
relation.isAuthorOfPublication.latestForDiscovery c1644357-fb5e-46b5-be18-1dd9b8e84e2e
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections