Recurrent neural networks for spam E-mail classification on an agglutinative language

dc.authorscopusid56247318100
dc.authorscopusid55806648900
dc.authorscopusid55293387500
dc.authorscopusid15081108900
dc.contributor.authorIşik,S.
dc.contributor.authorKurt,Z.
dc.contributor.authorAnagun,Y.
dc.contributor.authorOzkan,K.
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-07-05T15:45:56Z
dc.date.available2024-07-05T15:45:56Z
dc.date.issued2020
dc.departmentAtılım Universityen_US
dc.department-tempIşik S., Computer Eng, Eskisehir Osmangazi University, Eskisehir, Turkey; Kurt Z., Computer Eng, Atılım University, Ankara, Turkey; Anagun Y., Computer Eng, Eskisehir Osmangazi University, Eskisehir, Turkey; Ozkan K., Computer Eng, Eskisehir Osmangazi University, Eskisehir, Turkeyen_US
dc.description.abstractIn this study, we have provided an alternative solution to spam and legitimate email classification problem. The different deep learning architectures are applied on two feature selection methods, including the Mutual Information (MI) and Weighted Mutual Information (WMI). Firstly, feature selection methods including WMI and MI are applied to reduce number of selected terms. Secondly, the feature vectors are constructed with concept of the bag-of-words (BoW) model. Finally, the performance of system is analyzed with using Artificial Neural Network (ANN), Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term Memory (BILSTM) models. After experimental simulations, we have observed that there is a competition between detection results of using WMI and MI when commented with accuracy rates for the agglutinative language, namely Turkish. The experimental scores show that the LSTM and BILSTM give 100% accuracy scores when combined with MI or WMI, for spam and legitimate emails. However, for particular cross-validation, the performance WMI is higher than MI features in terms e-mail grouping. It turns out that WMI and MI with deep learning architectures seem more robust to spam email detection when considering the high detection scores. © 2020, Ismail Saritas. All rights reserved.en_US
dc.identifier.citation7
dc.identifier.doi10.18201/ijisae.2020466316
dc.identifier.endpage227en_US
dc.identifier.issn2147-6799
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85100155779
dc.identifier.startpage221en_US
dc.identifier.urihttps://doi.org/10.18201/ijisae.2020466316
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3986
dc.identifier.volume8en_US
dc.institutionauthorKurt, Zühal
dc.language.isoenen_US
dc.publisherIsmail Saritasen_US
dc.relation.ispartofInternational Journal of Intelligent Systems and Applications in Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLSTMen_US
dc.subjectMutual informationen_US
dc.subjectOdds ratioen_US
dc.subjectRNNen_US
dc.subjectSpam E-mailen_US
dc.titleRecurrent neural networks for spam E-mail classification on an agglutinative languageen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationc1644357-fb5e-46b5-be18-1dd9b8e84e2e
relation.isAuthorOfPublication.latestForDiscoveryc1644357-fb5e-46b5-be18-1dd9b8e84e2e
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections