Doğu, Merve Nur

Loading...
Profile Picture
Name Variants
M.,Doğu
Merve Nur, Dogu
Dogu,M.N.
Doğu,M.N.
Dogu, Merve Nur
M., Dogu
Merve Nur, Doğu
M.N.Dogu
Doğu, Merve Nur
D., Merve Nur
D.,Merve Nur
M.N.Doğu
Job Title
Araştırma Görevlisi
Email Address
merve.dogu@atilim.edu.tr
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID
Scholarly Output

5

Articles

5

Citation Count

70

Supervised Theses

0

Scholarly Output Search Results

Now showing 1 - 5 of 5
  • Article
    Citation Count: 2
    A comprehensive characterization of the effect of spatter powder on IN939 parts fabricated by laser powder bed fusion
    (Elsevier Sci Ltd, 2023) Özer, Seren; Mussatto, Andre; Doğu, Merve Nur; Davut, Kemal; Davut, Kemal; Obeidi, Muhannad Ahmed; Brabazon, Dermot; Metallurgical and Materials Engineering; Department of Metallurgical and Materials Engineering
    This study is focused on a comprehensive characterization of virgin and spatter IN939 powders and the effects of a certain amount of spatter powder on the part quality of IN939 fabricated by the L-PBF process. A brown tint coloration formed Al2O3 oxide, pores, a 124.4% increase in the average particle size, a 10.2% decrease in the powder circularity, and a 7.5% decrease in the powder aspect ratio were observed in the spatter powder. Additionally, higher average grain size and lower nanohardness were obtained for the spatter powder. In order to understand the effect of a certain amount of spatter powder on the part quality, 10 wt% spatter powder was mixed with the virgin powder. This addition was found to decrease the flowability of the powder. Moreover, this addition decreased relative density by around 0.3% and increased surface roughness by around 80.8% in the fabricated samples (termed as V and SV). On the other hand, there was no considerable microstructural, texture, microhardness, and nanohardness difference between V and SV samples, although the spatter powder addition caused a 30.2% increase in the average grain size of SV. The overall texture for both V and SV samples exhibit (00 1)//BD.
  • Article
    Citation Count: 19
    Microstructural and texture evolution during thermo-hydrogen processing of Ti6Al4V alloys produced by electron beam melting
    (Elsevier Science inc, 2020) Doğu, Merve Nur; Davut, Kemal; Davut, Kemal; Tan, Evren; Gumus, Berkay; Dericioglu, Arcan F.; Department of Metallurgical and Materials Engineering
    The present study was conducted to reveal the effects of building angles and post heat-treatments (2-step Thermo-Hydrogen Processing (THP) and conventional annealing treatment) on the density, microstructure and texture of Ti6Al4V alloy parts produced by Electron Beam Melting (EBM). The results showed that regardless of the building angle; the density, microstructure and crystallographic texture (defined with respect to building angle) of the as-produced samples were identical; having Widmanstatten a structure and columnar beta-grains which are parallel to building direction. The main texture component for the alpha phase was (10 (1) over bar0)//building direction, and for beta phase (001)//building or heat flow direction. The first step of THP, namely, the hydrogenation step, produced a needle-like microstructure and increased the local misorientations due to lattice distortion. On the other hand, after application of the second step of THP, dehydrogenation step, microstructure was refined, particularly alpha-grains that were larger than 10 mu m and located at grain boundaries. Moreover, THP randomized the crystallographic texture since it involves beta to alpha phase transformation, at which one beta-grain can produce 12 distinct alpha-variants. The grain boundary misorientation distributions also changed in accordance with the microstructural changes during the 2-step THP. On the other hand, annealing coarsened the grain boundary and Widmanstatten alpha phases; moreover, it changed the texture so that the basal planes (0001) rotated 30 degrees around the building direction.
  • Article
    Citation Count: 20
    Recrystallization and grain growth kinetics of IN718 manufactured by laser powder bed fusion
    (Elsevier, 2022) Doğu, Merve Nur; Davut, Kemal; Obeidi, Muhannad Ahmed; Yalcin, Mustafa Alp; Gu, Hengfeng; Low, Thaddeus Song En; Brabazon, Dermot; Department of Metallurgical and Materials Engineering
    The recrystallization and grain growth behaviour of IN718 alloy additively manufactured by laser powder bed fusion (L-PBF) is presented herein. The effects of three different temperatures (1050, 1150 and 1250 degrees C) and holding times (15, 45 and 90 min) were investigated. The texture evolution of the samples was recorded via electron backscatter diffraction (EBSD). The as-built sample is composed of bowl-shaped melt pools, a chessboard-like grain pattern and has a cube texture {100}<001>. Recrystallized grains were observed in the samples treated at 1150 degrees C for 15 min, as well as the samples treated for longer periods and at higher temperatures. Recrystallization was observed to start from high dislocation density regions, including the overlapping melt pools and the borders of the chessboard-like pattern. The initial cube texture transforms into a first-generation cube-twin texture {122}<212> via a twinning-assisted recrystallization mechanism. Then, those recrystallization nuclei sweep through the high defect density matrix; during which almost no new twins are formed. The samples treated at 1250 degrees C are almost completely recrystallized, which forms a weaker cube texture and a stronger P-orientation {011}<112>. However, the growth of recrystallized grains is very limited due to the presence of non-coherent precipitates. (C) 2022 The Author(s). Published by Elsevier B.V.
  • Article
    Citation Count: 5
    Effect of solution heat treatment on the microstructure and crystallographic texture of IN939 fabricated by powder bed fusion-laser beam
    (Elsevier, 2023) Özer, Seren; Ozer, Seren; Doğu, Merve Nur; Davut, Kemal; Bilgin, Guney Mert; Obeidi, Muhannad Ahmed; Brabazon, Dermot; Metallurgical and Materials Engineering; Department of Metallurgical and Materials Engineering
    The effect of various solution heat treatment temperatures (i.e., 1120, 1160, 1200 and 1240 & DEG;C) on the microstructure, grain morphology and crystallographic texture of IN939 fabricated by powder bed fusion-laser beam (PBF-LB) was investigated. Microstructural analyses showed that the high-temperature gradient and rapid solidification of the PBF-LB processing caused different resulting microstructures compared to conventionally pro-duced counterparts. The melt pool morphologies and laser scanning paths were examined in the as-fabricated samples in the XZ-and XY-planes, respectively. After the application of solution heat treatment at 1120 & DEG;C, the as-fabricated PBF-LB initial microstructure was still apparent. For solution heat treatments of 1200 & DEG;C and above, the melt pool and scanning path morphologies disappeared and converted into a mixture of columnar grains in the XZ-plane and equiaxed grains in the XY-plane. On the other hand, large equiaxed grains were observed when the samples were solutionized at 1240 & DEG;C. Additionally, g' phase precipitated within the matrix after all solution heat treatment conditions, which led to increase in the microhardness values. According to electron backscatter diffraction (EBSD) analyses, both as-fabricated and solution heat-treated samples had intense texture with {001} plane normal parallel to the building direction. The first recrystallized grains began to appear when the samples were subjected to the solution heat treatment at 1160 & DEG;C and the fraction of the recrystallized grains increased with increasing temperature, as supported by kernel average misorientation (KAM) and grain spread orientation (GOS) analyses.& COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  • Article
    Citation Count: 24
    Assessing dependency of part properties on the printing location in laser-powder bed fusion metal additive manufacturing
    (Elsevier, 2022) Doğu, Merve Nur; Groarke, Robert; Vijayaraghavan, Rajani K.; Hughes, Cian; Obeidi, Muhannad Ahmed; Dogu, Merve Nur; Brabazon, Dermot; Department of Metallurgical and Materials Engineering
    Despite the accelerated growth of laser-powder bed fusion in recent years, there are still major obstacles to be overcome before the technology enjoys truly widespread adoption. These include inconsistent part quality and repeatability issues linked to variability in the properties of printed parts. Commonly, the print location across the build platform is overlooked and assumed to have little or no effect on the overall part properties. There is a lack of previous systematic studies and a lack of knowledge of the influences of the location parameter on the final part properties. Therefore, to address the existing problem, the current study completely isolated the location parameter to accurately assess any effect of this variable on the microstructure and mechanical properties of laser-powder bed fusion manufactured parts. The results revealed the importance of the build location and showed that there is correlation between the location parameter and part properties as qualitative and quantitative properties of printed parts varied between the selected extremity locations. The findings highlight the importance of considering the location of the part being printed on the build platform and how the location may need to be fixed for multiple builds in order to achieve acceptable repeatability.