Sarıkaya, Badegül

Loading...
Profile Picture
Name Variants
Badegül Sarıkaya
Badegül, Sarıkaya
B., Sarıkaya
Sarıkaya,B.
B.,Sarıkaya
S.,Badegul
B., Sarikaya
Sarıkaya, Badegül
Sarikaya,B.
Badegul, Sarikaya
Sarikaya, Badegul
S., Badegul
S.,Badegül
Sarikaya,Badegul
B.,Sarikaya
S., Badegül
Job Title
Yardımcı Doçent
Email Address
badegul.sarikaya@atilim.edu.tr
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID
Scholarly Output

2

Articles

2

Citation Count

2

Supervised Theses

0

Scholarly Output Search Results

Now showing 1 - 2 of 2
  • Article
    Effects of Sevoflurane and Fullerenol C60 on the Heart and Lung in Lower-Extremity Ischemia-Reperfusion Injury in Streptozotocin-Induced Diabetes Mice
    (Mdpi, 2024) Ornek, Ender; Alkan, Metin; Erel, Selin; Sarıkaya, Badegül; Dursun, Ali Dogan; Sarıkaya, Badegül; Arslan, Mustafa; Basic Sciences; Anesthesia Program
    Background and Objectives: Lower-extremity ischemia-reperfusion injury can induce distant organ ischemia, and patients with diabetes are particularly susceptible to ischemia-reperfusion injury. Sevoflurane, a widely used halogenated inhalation anesthetic, and fullerenol C60, a potent antioxidant, were investigated for their effects on heart and lung tissues in lower-extremity ischemia-reperfusion injury in streptozotocin (STZ)-induced diabetic mice. Materials and Methods: A total of 41 mice were divided into six groups: control (n = 6), diabetes-control (n = 7), diabetes-ischemia (n = 7), diabetes-ischemia-fullerenol C60 (n = 7), diabetes-ischemia-sevoflurane (n = 7), and diabetes-ischemia-fullerenol C60-sevoflurane (n = 7). Diabetes was induced in mice using a single intraperitoneal dose of 55 mg/kg STZ in all groups except for the control group. Mice in the control and diabetes-control groups underwent midline laparotomy and were sacrificed after 120 min. The DIR group underwent 120 min of lower-extremity ischemia followed by 120 min of reperfusion. In the DIR-F group, mice received 100 mu g/kg fullerenol C60 intraperitoneally 30 min before IR. In the DIR-S group, sevoflurane and oxygen were administered during the IR procedure. In the DIR-FS group, fullerenol C60 and sevoflurane were administered. Biochemical and histological evaluations were performed on collected heart and lung tissues. Results: Histological examination of heart tissues showed significantly higher necrosis, polymorphonuclear leukocyte infiltration, edema, and total damage scores in the DIR group compared to controls. These effects were attenuated in fullerenol-treated groups. Lung tissue examination revealed more alveolar wall edema, hemorrhage, vascular congestion, polymorphonuclear leukocyte infiltration, and higher total damage scores in the DIR group compared to controls, with reduced injury parameters in the fullerenol-treated groups. Biochemical analyses indicated significantly higher total oxidative stress, oxidative stress index, and paraoxonase-1 levels in the DIR group compared to the control and diabetic groups. These levels were lower in the fullerenol-treated groups. Conclusions: Distant organ damage in the lung and heart tissues due to lower-extremity ischemia-reperfusion injury can be significantly reduced by fullerenol C60.
  • Article
    Paraoxonase and Oxidative Stress Changes in Left and Right Ventricles of Exhaustively Exercised Rats
    (Canadian Science Publishing, 2021) Sarikaya, Badegul; Runa, Metin; Dayanir, Duygu; Gunduztepe, Yasemin; Pinar, Lamia; Basic Sciences
    Exhaustive exercise can cause subclinical inflammation to the heart, as it is an oxidative tissue that works continuously. The effect of exhaustive exercise on left and right ventricles (LVs, RVs) may be different. It is claimed that paraoxonase-1 (PON1), an antioxidant enzyme, has a cardioprotective effect on oxidative stress. Rats were separated as non-exercised controls (Con), those euthanized immediately after (E-0) and 24 h after exhaustive exercise (E-24). Cardiac troponin-I (cTnI), total antioxidant status (TAS), total oxidant status (TOS), PON1 activities, and histological findings in LV and RV of the exhausted rats were evaluated. TAS and PON1 levels were lower in LVs compared with RVs of all groups. TOS levels were high in LVs compared with RVs of all groups. In LVs, TAS levels decreased significantly in the E-0 group while PON1 activity decreased in E-0 and E-24 groups compared with controls. In LVs, TOS levels decreased significantly in E-0 and E-24 groups, but in RVs a decrease was seen only in the E-0 group. cTnI levels increased significantly in the E-0 group and decreased to control levels in the E-24 group. Considering the histological and biochemical findings, exhaustive exercise affected the heart to the maximum during and just after exhaustion, and LV was influenced more than RV.