Ergenç, Tanıl

Loading...
Profile Picture
Name Variants
Ergenc T.
T., Ergenç
T.,Ergenc
T., Ergenc
Ergenç T.
Ergenç,T.
Tanil, Ergenc
E.,Tanil
Ergenc,Tanil
Tanıl Ergenç
E.,Tanıl
Ergenc, Tanil
E., Tanil
Tanıl, Ergenç
T.,Ergenç
Eigenc T.
Ergenc,T.
E., Tanıl
Ergenç, Tanıl
Job Title
Profesör Doktor
Email Address
tanil.ergenc@atilim.edu.tr
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID
Scholarly Output

3

Articles

3

Citation Count

2

Supervised Theses

0

Scholarly Output Search Results

Now showing 1 - 3 of 3
  • Article
    Citation Count: 0
    Romberg integration: A symbolic approach with mathematica
    (Springer Verlag, 2003) Yazici,A.; Ergenç,T.; Altas,I.; Mathematics; Software Engineering
    Higher order approximations of an integral can be obtained from lower order ones in a systematic way. For 1-D integrals Romberg Integration is an example which is based upon the composite trapezoidal rule and the well-known Euler-Maclaurin expansion of the error. In this work, Mathematica is utilized to illustrate the method and the underlying theory in a symbolic fashion. This approach seems plausible for discussing integration in a numerical computing laboratory environment. © Springer-Verlag Berlin Heidelberg 2003.
  • Article
    Citation Count: 2
    Symbolic polynomial interpolation using mathematica
    (Springer Verlag, 2004) Yazici,A.; Altas,I.; Ergenc,T.; Mathematics; Software Engineering
    This paper discusses teaching polynomial interpolation with the help of Mathematica. The symbolic power of Mathematica is utilized to prove a theorem for the error term in Lagrange interpolating formula. Derivation of the Lagrange formula is provided symbolically and numerically. Runge phenomenon is also illustrated. A simple and efficient symbolic derivation of cubic splines is also provided. © Springer-Verlag Berlin Heidelberg 2004.
  • Article
    Romberg Integration: A Symbolic Approach with Mathematica
    (2003) Yazıcı, Ali; Ergenç, Tanıl; Altaş, İrfan; Mathematics; Software Engineering
    Higher order approximations of an integral can be obtained from lower order ones in a systematic way. For 1-D integrals Romberg Integration is an example which is based upon the composite trapezoidal rule and the well-known Euler-Maclaurin expansion of the error. In this work, Mathematica is utilized to illustrate the method and the under lying theory in a symbolic fashion. This approach seems plausible for discussing integration in a numerical computing laboratory environment.