Diğer Yayınlar
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14411/27
Browse
Browsing Diğer Yayınlar by browse.metadata.publisher "Biomedical Research"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Classification of Parasite Egg Cells Using Gray Level Cooccurence Matrix and Knn.(Biomedical Research, 2016) Şengül, GökhanParasite eggs are around 20 to 80 μm dimensions, and they can be seen under microscopes only and their detection requires visual analyses of microscopic images, which requires human expertise and long analysis time. Besides visual analysis is very error prone to human procedures. In order to automatize this process, a number of studies are proposed in the literature. But there is still a gap between the preferred performance and the reported ones and it is necessary to increase the performance of the automatic parasite egg classification approaches. In this study a learning based statistical pattern recognition approach for parasite egg classification is proposed that will both decrease the time required for the manual classification by an expert and increase the performance of the previously suggested automated parasite egg classification approaches. The proposed method uses Gray-Level Co-occurrence Matrix as the feature extractor, which is a texture based statistical method that can differentiate the parasite egg cells based on their textures, and the k-Nearest Neighbourhood (kNN) classifier for the classification. The proposed method is tested on 14 parasite egg types commonly seen in humans. The results show that proposed method can classify the parasite egg cells with a performance rate of 99%.Article Determination of Measurement Noise, Conductivity Errors and Electrode Mislocalization Effects To Somatosensory Dipole Localization(Biomedical Research, 2012) Şengül, Gökhan; Baysal, UğurCalculating the spatial locations, directions and magnitudes of electrically active sources of human brain by using the measured scalp potentials is known as source localization. An accu rate source localization method requires not only EEG data but also the 3-D positions and number of measurement electrodes, the numerical head model of the patient/subject and the conductivities of the layers used in the head model. In this study we computationally deter mined the effect of noise, conductivity errors and electrode mislocalizations for electrical sources located in somatosensory cortex. We first randomly selected 1000 electric sources in somatosensory cortex, and for these sources we simulated the surface potentials by using av erage conductivities given in the literature and 3-D positions of the electrodes. We then added random noise to measurements and by using noisy data; we tried to calculate the positions of the dipoles by using different electrode positions or different conductivity values. The esti mated electrical sources and original ones are compared and by this way the effect of meas urement noise, electrode mislocalizations and conductivity errors to somatosensory dipole lo calization is investigated. We conclude that for an accurate somatosensory source localization method, we need noiseless measurements, accurate conductivity values of scalp and skull lay ers and the accurate knowledge of 3-D positions of measurement sensors.
