Diğer Yayınlar
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14411/27
Browse
Browsing Diğer Yayınlar by browse.metadata.publisher "Annals of Biomedical Engineering"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article An Experimental Study on the Effect of the Anisotropic Regions in a Realistically Shaped Torso Phantom(Annals of Biomedical Engineering, 2008) Şengül, Gökhan; Lıehr, Mario; Haueısen, Jens; Baysal, UğurDetermination of electrically active regions in the human body by observing generated bioelectric and/or biomagnetic signals is known as source reconstruction. In the reconstruction process, it is assumed that the volume conductor consists of isotropic compartments and homoge neous tissue bioelectric parameters but this assumption introduces errors when the tissue of interest is anisotropic. The aim of this study was to investigate changes in the measured signal strengths and the estimated positions and orientations of current dipoles in a realistically shaped torso phantom having a heart region built from single guar gum skeins. Electric data were recorded with 60 electrodes on the front of the chest and 195 sensors measured the magnetic field 2 cm above the chest. The artificial rotating dipoles were located underneath the anisotropic skeins distant from the sensors. It was found that the signal strengths and estimated dipole orientations were influenced by the anisotropy while the estimated dipole positions were not significantly influ enced. The signal strength was reduced between 17% and 43% for the different dipole positions when comparing the parallel alignment of dipole orientation and anisotropy direction with the orthogonal alignment. The largest error in the estimation of dipole orientation was 42 degrees. The observed changes in the magnetic fields and electric poten tials can be explained by the fact that the anisotropic skeins force the current along its direction. We conclude that taking into account anisotropic structures in the volume conductor might improve signal analysis as well as source strength and orientation estimations for bioelectric and biomagnetic investigations.Article Single Camera Photogrammetry System for Eeg Electrode Identification and Localization(Annals of Biomedical Engineering, 2010) Baysal, Uğur; Şengül, GökhanIn this study, photogrammetric coordinate measurement and color-based identification of EEG electrode positions on the human head are simultaneously implemented. A rotating, 2MP digital camera about 20 cm above the subject’s head is used and the images are acquired at predefined stop points separated azimuthally at equal angular displacements. In order to realize full automation, the electrodes have been labeled by colored circular markers and an electrode recognition algorithm has been developed. The proposed method has been tested by using a plastic head phantom carrying 25 electrode markers. Electrode locations have been determined while incorporating three different methods: (i) the proposed photogrammetric method, (ii) conventional 3D radiofrequency (RF) digitizer, and (iii) coordinate measurement machine having about 6.5 lm accuracy. It is found that the proposed system automatically identifies electrodes and localizes them with a maximum error of 0.77 mm. It is suggested that this method may be used in EEG source localization applications in the human brain.
