Browsing by Author "Ozturk, Reyhan Atabay"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article The Design and Techno-Economic Evaluation of Wind Energy Integrated On-Site Hydrogen Fueling Stations for Different Electrolyzer Technologies(Pergamon-Elsevier Science Ltd, 2025) Devrim, Yilser; Ozturk, Reyhan Atabay; Energy Systems EngineeringHydrogen refueling stations (HRS) integrated with renewable energy sources present a pivotal solution for achieving sustainable transportation systems. This study focuses on the design and techno-economic analysis of a grid-connected, on-site hydrogen production HRS powered by wind energy, incorporating various electrolyzer technologies. The selected location for the HRS installation is & Ccedil;anakkale, Turkey, where daily wind speed data has been utilized for performance calculations. The proposed HRS system integrates a wind turbine (WT) with three different electrolyzer technologies: alkaline electrolyzer (AEL), proton exchange membrane electrolyzer (PEMEL), and anion exchange membrane electrolyzer (AEMEL). A comprehensive techno-economic analysis was conducted to evaluate the system's performance, considering factors such as initial capital investment, installation, operation, and replacement costs. The results of the analysis reveal that the levelized cost of hydrogen (LCOH) varies between 9.0 and 18.7 /kg H2, depending on the type of electrolyzer technology used and the daily hydrogen refueling capacity. Notably, increasing the hydrogen refueling capacity significantly reduces production costs. The minimum LCOH of 9.0 /kg H2, achieved under a 20-year investment scenario, corresponds to a refueling capacity of 250 kg H2/day when utilizing the AEL-integrated HRS system. The findings underscore the economic feasibility of on-site hydrogen refueling stations powered by wind energy and utilizing AEL, AEMEL, and PEMEL systems. Among the systems analyzed, the AEL-based HRS system demonstrated the highest return on investment (ROI) of 13.02 % and the shortest payback period (PBP) of 7.7 years, highlighting its economic performance. This study provides valuable insights into the integration of renewable energy with hydrogen production infrastructure, emphasizing the potential of wind-powered HRS systems to advance the sustainability and economic viability of hydrogen-based transportation solutions.Article Citation - WoS: 5Citation - Scopus: 5Optimal Design and Technoeconomic Analysis of On-Site Hydrogen Refueling Station Powered by Wind and Solar Photovoltaic Hybrid Energy Systems(Pergamon-elsevier Science Ltd, 2025) Ozturk, Reyhan Atabay; Devrim, Yilser; Energy Systems EngineeringIn this study, a grid-connected on-site hydrogen filling station (HRS) integrated with renewable energy systems is designed and examined for different daily hydrogen refueling capacities. The installation location of the HRS is selected in Izmir (Turkey) and daily solar radiation and wind speed data are used in the calculations. The HRS station was integrated with a hybrid energy system using photovoltaic panels (PV), wind turbine (WT) and PV/ WT and five different daily refueling scenarios were investigated. A techno-economic analysis is conducted for the designed HRS system, considering the initial investment capital, installation and operating costs. The levelized cost of hydrogen (LCOH) is evaluated according to different refueling capacity scenarios, periods of operation and renewable energy installation capacities. The lowest LCOH is obtained as 4.5 /kg H2 in the PVintegrated HRS system for a 20-year investment scenario. The results prove the suitability of the HRS system for integrating renewable energy in the identified region. It is recommended to integrate analytical models for the system components to increase the reliability of the design and optimization process in future planned studies.