The Design and Techno-Economic Evaluation of Wind Energy Integrated On-Site Hydrogen Fueling Stations for Different Electrolyzer Technologies

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-Elsevier Science Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Energy Systems Engineering
(2009)
The Department of Energy Systems Engineering admitted its first students and started education in the academic year of 2009-2010 under Atılım University School of Engineering. In this Department, all kinds of energy are presented in modules (conventional energy, renewable energy, hydrogen energy, bio-energy, nuclear energy, energy planning and management) from their detection, production and procession; to their transfer and distribution. A need is to arise for a surge of energy systems engineers to ensure energy supply security and solve environmental issues as the most important problems of the fifty years to come. In addition, Energy Systems Engineering is becoming among the most important professions required in our country and worldwide, especially within the framework of the European Union harmonization process, and within the free market economy.

Journal Issue

Abstract

Hydrogen refueling stations (HRS) integrated with renewable energy sources present a pivotal solution for achieving sustainable transportation systems. This study focuses on the design and techno-economic analysis of a grid-connected, on-site hydrogen production HRS powered by wind energy, incorporating various electrolyzer technologies. The selected location for the HRS installation is & Ccedil;anakkale, Turkey, where daily wind speed data has been utilized for performance calculations. The proposed HRS system integrates a wind turbine (WT) with three different electrolyzer technologies: alkaline electrolyzer (AEL), proton exchange membrane electrolyzer (PEMEL), and anion exchange membrane electrolyzer (AEMEL). A comprehensive techno-economic analysis was conducted to evaluate the system's performance, considering factors such as initial capital investment, installation, operation, and replacement costs. The results of the analysis reveal that the levelized cost of hydrogen (LCOH) varies between 9.0 and 18.7 <euro>/kg H2, depending on the type of electrolyzer technology used and the daily hydrogen refueling capacity. Notably, increasing the hydrogen refueling capacity significantly reduces production costs. The minimum LCOH of 9.0 <euro>/kg H2, achieved under a 20-year investment scenario, corresponds to a refueling capacity of 250 kg H2/day when utilizing the AEL-integrated HRS system. The findings underscore the economic feasibility of on-site hydrogen refueling stations powered by wind energy and utilizing AEL, AEMEL, and PEMEL systems. Among the systems analyzed, the AEL-based HRS system demonstrated the highest return on investment (ROI) of 13.02 % and the shortest payback period (PBP) of 7.7 years, highlighting its economic performance. This study provides valuable insights into the integration of renewable energy with hydrogen production infrastructure, emphasizing the potential of wind-powered HRS systems to advance the sustainability and economic viability of hydrogen-based transportation solutions.

Description

Keywords

Hydrogen Refueling Station, Wind Energy, Green Hydrogen, Electrolyzer Technology, Levelized Hydrogen Cost

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Q1

Source

International Journal of Hydrogen Energy

Volume

159

Issue

Start Page

End Page

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

1

NO POVERTY
NO POVERTY Logo

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

15

LIFE ON LAND
LIFE ON LAND Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo