Browsing by Author "Kanberoglu, Gulsah Saydan"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Article Citation - WoS: 7Citation - Scopus: 8Chromium Based Metal-Organic Framework Mil-101 Decorated Palladium Nanoparticles for the Methanolysis of Ammonia-Borane(Royal Soc Chemistry, 2020) Caner, Nurdan; Yurderi, Mehmet; Bulut, Ahmet; Kanberoglu, Gulsah Saydan; Kaya, Murat; Zahmakiran, Mehmet; Chemical EngineeringPalladium nanoparticles stabilized by an MIL-101 metal-organic framework (Pd@MIL-101) are synthesized by a novel synthesis approach. A Pd@MIL-101 catalyst facilitates H(2)generation from the methanolysis of ammonia-borane with record catalytic activity (TOF = 1080 min(-1)) at room temperature. Moreover, the exceptional stability of Pd@MIL-101 makes it a reusable heterogeneous catalyst in this catalytic transformation.Article Citation - WoS: 18Citation - Scopus: 20Cobalt nanoparticles supported on alumina nanofibers (Co/Al2O3): Cost effective catalytic system for the hydrolysis of methylamine borane(Pergamon-elsevier Science Ltd, 2019) Baguc, Ismail Burak; Yurderi, Mehmet; Bulut, Ahmet; Celebi, Metin; Kanberoglu, Gulsah Saydan; Zahmakiran, Mehmet; Baysal, AkinAmongst different amine-borane derivatives, methylamine-borane (CH3NH2BH3) seems to be one of the capable aspirants in the storing of hydrogen attributable to its high hydrogen capacity, stability and aptitude to generate hydrogen through its catalytic hydrolysis reaction under ambient conditions. In this research paper, we report that cobalt nano-particles supported on alumina nanofibers (Co/Al2O3) are acting as active nanocatalyst for catalytic hydrolysis of methylamine-borane. Co/Al2O3 nanocatalyst was fabricated by double-solvent method followed with wet-chemical reduction, and was characterized by utilizing various spectroscopic methods and imaging techniques. The results gathered from these analyses showed that the formation Al2O3 nanofibers supported cobalt(0) nanoparticles with a mean diameter of 3.9 +/- 1.2 nm. The catalytic feat of these cobalt nanoparticles was scrutinized in the catalytic hydrolysis of methylamine-borane by considering their activity and durability performances. They achieve releasing of 3.0 equivalent of H-2 via methylamine-borane hydrolysis at room temperature (initial TOF = 297 mol H-2/mol metal x h). Along with activity the catalytic durability of Co/Al2O3 was also studied by carrying out recyclability tests and it was found that these supported cobalt nanoparticles have good durability during the course of the catalytic recycles so that Co/Al2O3 preserves almost its innate activity at 5th catalytic recycle. The studies presented here also contains kinetic investigation of Co/Al2O3 catalyzed methylamine borane hydrolysis depending on the temperature, cobalt and methylamine borane concentrations, which were used to define rate expression and the activation energy of the catalytic reaction. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.Article Citation - WoS: 19Citation - Scopus: 20Complete Dehydrogenation of Hydrazine Borane on Manganese Oxide Nanorod-Supported Ni@ir Core-Shell Nanoparticles(Amer Chemical Soc, 2020) Yurderi, Mehmet; Top, Tuba; Bulut, Ahmet; Kanberoglu, Gulsah Saydan; Kaya, Murat; Zahmakiran, Mehmet; Chemical EngineeringHydrazine borane (HB; N2H4BH3) has been considered to be one of the most promising solid chemical hydrogen storage materials owing to its high hydrogen capacity and stability under ambient conditions. Despite that, the high purity of hydrogen production from the complete dehydrogenation of HB stands as a major problem that needs to be solved for the convenient use of HB in on-demand hydrogen production systems. In this study, we describe the development of a new catalytic material comprised of bimetallic Ni@Ir core-shell nanoparticles (NPs) supported on OMS-2-type manganese oxide octahedral molecular sieve nanorods (Ni@Ir/OMS-2), which can reproducibly be prepared by following a synthesis protocol including (i) the oleylamine-mediated preparation of colloidal Ni@Ir NPs and (ii) wet impregnation of these ex situ synthesized Ni@Ir NPs onto the OMS-2 surface. The characterization of Ni@Ir/OMS-2 has been done by using various spectroscopic and visualization techniques, and their results have revealed the formation of well-dispersed Ni@Ir core-shell NPs on the surface of OMS-2. The catalytic employment of Ni@Ir/OMS-2 in the dehydrogenation of HB showed that Ni-0.22@Ir-0.78/OMS-2 exhibited high dehydrogenation selectivity (>99%) at complete conversion with a turnover frequency (TOF) value of 2590 h(-1) at 323 K, which is the highest activity value among all reported catalysts for the complete dehydrogenation of HB. Furthermore, the Ni-0.22@Ir-0.78/OMS-2 catalyst enables facile recovery and high stability against agglomeration and leaching, which make it a reusable catalyst in the complete dehydrogenation of HB. The studies reported herein also include the collection of wealthy kinetic data to determine the activation parameters for Ni-0.22@Ir-0.78/OMS-2-catalyzed dehydrogenation of HB.Article Citation - WoS: 13Citation - Scopus: 13Ruthenium Nanoparticles Supported on Reduced Graphene Oxide: Efficient Catalyst for the Catalytic Reduction of Cr(vi) in the Presence of Amine-Boranes(Wiley-v C H verlag Gmbh, 2020) Yurderi, Mehmet; Bulut, Ahmet; Kanberoglu, Gulsah Saydan; Kaya, Murat; Kanbur, Yasin; Zahmakiran, Mehmet; Chemical EngineeringHexavalent chromium (Cr(VI)) is a toxic, mutagen and carcinogen contaminant exist in surface and groundwater, while its reduced form trivalent chromium (Cr(III)) is known as an essential element to normal carbohydrate, lipid and protein metabolism in nature. Addressed herein, for the first time, ruthenium nanoparticles supported on reduced graphene oxide (Ru@rGO) catalyze the reduction of aqueous Cr(VI) to Cr(III) in the presence of amine-boranes; ammonia-borane (AB; NH3BH3), methylamine-borane (MeAB; CH3NH2BH3), dimethylamine-borane (DMAB; (CH3)(2)NHBH3) as reducing agents under mild conditions (at room temperature and under air). Ru@rGO catalyst was reproducibly fabricated through a double-solvent method followed by wet-chemical reduction and characterized by using various spectroscopic and visualization techniques, which showed that the formation of well-dispersed and highly crystalline ruthenium(0) nanoparticles with a mean particle size of 2.7 +/- 0.9 nm on the surface of rGO. The catalytic performance of Ru@rGO was investigated in terms of activity and stability in the ammonia-borane assisted reduction of Cr(VI) to Cr(III), and the sum of the results gained from these catalytic tests revealed that Ru@rGO acts as both active (TOF=7.6 mol Cr2O72-/mol Ru.min) and stable (80% of its initial activity at 90% conversion at 5(th)reuse) heterogeneous catalyst in this significant catalytic transformation. This study also reports kinetic studies for Ru@rGO catalyzed Cr(VI) reduction in the presence of ammonia-borane depending on ruthenium ([Ru]), ammonia-borane ([AB]) concentrations and temperature to shed some light on the nature of the catalytic reaction and activation parameters.