1. Home
  2. Browse by Author

Browsing by Author "Jafari,R."

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Conference Object
    Comparison of the Membrane-Based Desorber and Plate Heat Exchanger Desorber for Solar Assisted Absorption Refrigeration Systems
    (Toronto Metropolitan University, 2023) Ozvaris,Y.G.; Jafari,R.; Ozyurt,T.O.
    The Absorption Refrigeration System (ARS) is a type of cooling system that uses non-toxic, non-volatile, and nonflammable working fluids. The system includes a pump and a heat exchanger for the molten solution, in addition to evaporator and condenser components found in a vapor compression refrigeration cycle. Instead of using a compressor, a thermal mechanism such as solar or geothermal energy is utilized for circulation, resulting in significant energy savings. Although generally it is used in large industrial applications, the use of membrane technology in the absorber and/or desorber makes it suitable for residential applications due to the large area-to-volume ratios of the resulting components. In this study, the numerical investigation of the membrane-based desorber, which is known to have the highest COP for the ARS, is performed. Working fluid is H2O–LiBr solution. The pore diameter of microporous polytetraphluoroethylene (PTFE) membrane is 0.45 μm and thickness is 200 μm that is used to separate the solution from the vapour. The results for two type desorbers obtained for hot water and solution heat transfer coefficients, COP, volumetric cooling effect and cooling power are provided and compared to each other. © 2023, Toronto Metropolitan University. All rights reserved.
  • Loading...
    Thumbnail Image
    Conference Object
    Citation - Scopus: 1
    Numerical Evaluation of Thermal Comfort, Iaq Indices, and Tes for the Improvement of the Energy Performance in Crowded Area
    (Institute of Electrical and Electronics Engineers Inc., 2022) Al-Malaki,F.; Jafari,R.
    This paper proposed new strategies for investigating the reality of indoor air quality (IAQ). The actual crowded cell was simulated by scale of 1:4 containing five persons in which two of them are lying. It was aimed to keep the stability of the oxygen / air ratio to prevent suffocation by controlling the air velocity as quickly as possible from HVAC systems, especially in the overcrowded area. Phase change materials (PCMs) were used to reduce the fluctuations of inside space temperatures for the thermal performance. Two different organic PCMs were used to analyse the temperature distribution in the prototype model. This study also is focused on the analysis of the thermal efficiency of PCMs that is established on thermal energy storage (TES) for energy embalmment in the prototype model, for thermal management of special zone temperature applications. In addition, temperature distributions inside the cell with and without the embedded PCM in the ceiling have been illustrated. Using of PCM has reduced the cell temperature about 7°C. © 2022 IEEE.