Browsing by Author "Erişen, Serdar"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Citation - WoS: 0Citation - Scopus: 0An Empirical Study of the Technoparks in Turkey in Investigating the Challenges and Potential of Designing Intelligent Spaces(Mdpi, 2023) Erisen, Serdar; ArchitectureThe use of innovative technologies in workspaces, such as the Internet of Things (IoT) and smart systems, has been increasing, yet it remains in the minority of the total number of smart system applications. However, universities and technopoles are part of open innovation that can encourage experimental IoT and smart system projects in places. This research considers the challenges and advantages of developing intelligent environments with smart systems in the Technology Development Zones (TDZs) of Turkey. The growth of Silicon Valley has inspired many technopoles in different countries. Thus, the article includes first a comprehensive survey of the story of Silicon Valley and the emerging technological potential of open and responsible innovation for intelligent spaces and technoparks with rising innovative interest. The study then conducts empirical research in inspecting the performance of TDZs in Turkey. In the research, machine learning and Artificial Intelligence (AI) models are applied in the analyses of critical performance indicators for encouraging incentives and investments in innovative attempts and productivity in TDZs; the challenges, potential, and need for intelligent spaces are evaluated accordingly. This article also reports on the minority of the design staff and the lack of innovation in developing intelligent spaces in the organization of the creative class in Turkey. Consequently, the research proposes a set of implementations for deploying intelligent spaces to be practiced in new and existing TDZs by considering their potential for sustainable and responsible innovation.Article Citation - WoS: 4Citation - Scopus: 7Real-Time Learning and Monitoring System in Fighting Against Sars-Cov in a Private Indoor Environment(Mdpi, 2022) Erisen, Serdar; ArchitectureThe SARS-CoV-2 virus has posed formidable challenges that must be tackled through scientific and technological investigations on each environmental scale. This research aims to learn and report about the current state of user activities, in real-time, in a specially designed private indoor environment with sensors in infection transmission control of SARS-CoV-2. Thus, a real-time learning system that evolves and updates with each incoming piece of data from the environment is developed to predict user activities categorized for remote monitoring. Accordingly, various experiments are conducted in the private indoor space. Multiple sensors, with their inputs, are analyzed through the experiments. The experiment environment, installed with microgrids and Internet of Things (IoT) devices, has provided correlating data of various sensors from that special care context during the pandemic. The data is applied to classify user activities and develop a real-time learning and monitoring system to predict the IoT data. The microgrids were operated with the real-time learning system developed by comprehensive experiments on classification learning, regression learning, Error-Correcting Output Codes (ECOC), and deep learning models. With the help of machine learning experiments, data optimization, and the multilayered-tandem organization of the developed neural networks, the efficiency of this real-time monitoring system increases in learning the activity of users and predicting their actions, which are reported as feedback on the monitoring interfaces. The developed learning system predicts the real-time IoT data, accurately, in less than 5 milliseconds and generates big data that can be deployed for different usages in larger-scale facilities, networks, and e-health services.Article Citation - WoS: 7Citation - Scopus: 8A Systematic Approach To Optimizing Energy-Efficient Automated Systems With Learning Models for Thermal Comfort Control in Indoor Spaces(Mdpi, 2023) Erisen, Serdar; ArchitectureEnergy-efficient automated systems for thermal comfort control in buildings is an emerging research area that has the potential to be considered through a combination of smart solutions. This research aims to explore and optimize energy-efficient automated systems with regard to thermal comfort parameters, energy use, workloads, and their operation for thermal comfort control in indoor spaces. In this research, a systematic approach is deployed, and building information modeling (BIM) software and energy optimization algorithms are applied at first to thermal comfort parameters, such as natural ventilation, to derive the contextual information and compute the building performance of an indoor environment with Internet of Things (IoT) technologies installed. The open-source dataset from the experiment environment is also applied in training and testing unique black box models, which are examined through the users' voting data acquired via the personal comfort systems (PCS), thus revealing the significance of Fanger's approach and the relationship between people and their surroundings in developing the learning models. The contextual information obtained via BIM simulations, the IoT-based data, and the building performance evaluations indicated the critical levels of energy use and the capacities of the thermal comfort control systems. Machine learning models were found to be significant in optimizing the operation of the automated systems, and deep learning models were momentous in understanding and predicting user activities and thermal comfort levels for well-being; this can optimize energy use in smart buildings.