Browsing by Author "Bingöl, Ekin"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation Count: 23Exergy based performance analysis of high efficiency poly-generation systems for sustainable building applications(Elsevier Science Sa, 2011) Bingol, Ekin; Kilkis, Birol; Eralp, Cahit; Department of Mechanical EngineeringIn this study, first and second laws of thermodynamics, accompanying with Rational Exergy Management Method (REMM) were employed in developing a MATLAB based algorithm for natural gas fired, internal combustion engine (ICE) driven poly-generation systems. Two systems were studied based on a tri-generation plant built within the framework of the EU-FP6 HEGEL Project, tested at METU MATPUM (RICBED) building. This study introduces a better set of metrics for rating, evaluating, and optimizing poly-generation systems in order to minimize emissions, maximize fuel savings, and thus to accomplish an optimum sustainability metric among the factors of environment, energy, human needs and economics. Results show that with ICE poly-generation systems, exergy efficiency may increase beyond 60%. Even at part loads, minimum values of Primary energy savings (PES) are 12.4% for Case-1 and 17.7% for Case-2 (compared to minimum allowed 10%). REMM efficiency and Exergy Embedded PES (PES(R)) evaluated by REMM are proven to be better indicators of the performance. When exergy destruction is lower, (waste heat is recovered) PES(R) increases significantly. PES(R) values are minimum 18.2% for Case-1 and 42.4% for Case-2, which reveals that both systems provide high performance energy generation and considerably lower emissions. (C) 2011 Elsevier B.V. All rights reserved.Conference Object Citation Count: 67Modelling and simulation of a hybrid solar heating system for greenhouse applications using Matlab/Simulink(Pergamon-elsevier Science Ltd, 2013) Kiyan, Metin; Bingol, Ekin; Melikoglu, Mehmet; Albostan, Ayhan; Energy Systems Engineering; Department of Mechanical EngineeringSolar energy is a major renewable energy source and hybrid solar systems are gaining increased academic and industrial attention due to the unique advantages they offer. In this paper, a mathematical model has been developed to investigate the thermal behavior of a greenhouse heated by a hybrid solar collector system. This hybrid system contains an evacuated tube solar heat collector unit, an auxiliary fossil fuel heating unit, a hot water storage unit, control and piping units. A Matlab/Simulink based model and software has been developed to predict the storage water temperature, greenhouse indoor temperature and the amount of auxiliary fuel, as a function of various design parameters of the greenhouse such as location, dimensions, and meteorological data of the region. As a case study, a greenhouse located in Sanhurfa/Turkey has been simulated based on recent meteorological data and aforementioned hybrid system. The results of simulations performed on an annual basis indicate that revising the existing fossil fuel system with the proposed hybrid system, is economically feasible for most cases, however it requires a slightly longer payback period than expected. On the other hand, by reducing the greenhouse gas emissions significantly, it has a considerable positive environmental impact. The developed dynamic simulation method can be further used for designing heating systems for various solar greenhouses and optimizing the solar collector and thermal storage sizes. (C) 2013 Elsevier Ltd. All rights reserved.