Exergy based performance analysis of high efficiency poly-generation systems for sustainable building applications

No Thumbnail Available

Date

2011

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science Sa

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Mechanical Engineering
(2016)
The Mechanical Engineering Doctoral Program has started in 2016-2017 academic year. We have highly qualified teaching and research faculty members and strong research infrastructure in the department for graduate work. Research areas include computational and experimental research in fluid and solid mechanics, heat and mass transfer, advanced manufacturing, composites and other advanced materials. Our fundamental mission is to train engineers who are able to work with advanced technology, create innovative approaches and authentic designs, apply research methods effectively, conduct research and develop high quality methods and products in space, aviation, defense, medical and automotive industries, with a contemporary education and research infrastructure.

Journal Issue

Abstract

In this study, first and second laws of thermodynamics, accompanying with Rational Exergy Management Method (REMM) were employed in developing a MATLAB based algorithm for natural gas fired, internal combustion engine (ICE) driven poly-generation systems. Two systems were studied based on a tri-generation plant built within the framework of the EU-FP6 HEGEL Project, tested at METU MATPUM (RICBED) building. This study introduces a better set of metrics for rating, evaluating, and optimizing poly-generation systems in order to minimize emissions, maximize fuel savings, and thus to accomplish an optimum sustainability metric among the factors of environment, energy, human needs and economics. Results show that with ICE poly-generation systems, exergy efficiency may increase beyond 60%. Even at part loads, minimum values of Primary energy savings (PES) are 12.4% for Case-1 and 17.7% for Case-2 (compared to minimum allowed 10%). REMM efficiency and Exergy Embedded PES (PES(R)) evaluated by REMM are proven to be better indicators of the performance. When exergy destruction is lower, (waste heat is recovered) PES(R) increases significantly. PES(R) values are minimum 18.2% for Case-1 and 42.4% for Case-2, which reveals that both systems provide high performance energy generation and considerably lower emissions. (C) 2011 Elsevier B.V. All rights reserved.

Description

Kilkis, Birol/0000-0003-2580-3910; Ozgirgin Yapici, Ekin/0000-0002-7550-5949

Keywords

Co-generation, Poly-generation, Combined heat and power, Energy analysis, Exergy analysis, Rational exergy management model, Internal combustion engine, Building applications

Turkish CoHE Thesis Center URL

Fields of Science

Citation

23

WoS Q

Q1

Scopus Q

Source

Volume

43

Issue

11

Start Page

3074

End Page

3081

Collections