Özdemir, İzzetOzdemir, I.Brekelmans, W. A. M.Geers, M. G. D.Manufacturing Engineering2024-07-052024-07-052010190955-22191873-619X10.1016/j.jeurceramsoc.2009.12.0142-s2.0-77249142810https://doi.org/10.1016/j.jeurceramsoc.2009.12.014https://hdl.handle.net/20.500.14411/1466In this paper, a computational investigation on thermo-mechanically induced damage in refractory materials resulting from severe thermal shock conditions is presented. On the basis of an idealized two-phase material system. molten aluminium thermal shock tests' are computationally modeled by means of direct numerical simulations (DNS) The interfacial and bulk damage evolution within the material arc described by Merino-mechanical cohesive zones and continuum damage mechanics (CDM), respectively Reported experimental results' are used to identify the parameters of the model Furthermore, a parametric study is carried out to investigate the relative significance of various microstructure parameters in the context of thermal shock response. (C) 2009 Elsevier Ltd All rights reservedeninfo:eu-repo/semantics/closedAccessThermal shockThermo-mechanical damageDNS modelThermo-mechanical cohesive zonesHeterogeneous materialsModeling thermal shock damage in refractory materials via direct numerical simulation (DNS)ArticleQ130715851597WOS:000276174700003