Uzundurukan, ArifeDevrim, YilserEnergy Systems Engineering2024-07-052024-07-052019340360-31991879-348710.1016/j.ijhydene.2019.08.1532-s2.0-85072029780https://doi.org/10.1016/j.ijhydene.2019.08.153https://hdl.handle.net/20.500.14411/3479DEVRIM, YILSER/0000-0001-8430-0702; UZUNDURUKAN, ARIFE/0000-0003-1104-1644In this study, we report the results of a kinetic study on the hydrogen (H-2) generation from the hydrolysis of ammonia borane (NH3BH3) catalyzed by Platinum supported on carbon nanotube-graphene hybrid material (Pt/CNT-G). Synthesized catalyst was characterized by TGA, XRD, CP-OES, TEM and SEM-EDX techniques. Characterization studies have shown that the CNT-G hybrid support material provides desired distribution of the Pt particles on the support material. The effect of various parameters such as catalyst loading, reaction temperature, effect of NaOH and the effect of NH3BH3 concentration are also determined. Experimental results showed that the Pt/CNT-G catalyst exhibited high catalytic activity on NH3BH3 hydrolysis reaction to release H-2. It has been found that Pt/CNT-G catalyst shows low activation energy of 35.34 kJ mol(-1) for hydrolysis reaction of NH3BH3. Pt/CNT-G catalyst also exhibited high catalytic activity with turnover frequency (TOF) of 135 (mol(H2)/mol(cat).-min). Therefore, the synthesized Pt/CNT-G catalyst is a potential candidate for enhanced H-2 generation through NH3BH3 hydrolysis. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.eninfo:eu-repo/semantics/closedAccessH-2 generationAmmonia boraneHydrolysisCatalystPt/CNT-GCarbon nanotube-graphene hybrid supported platinum as an effective catalyst for hydrogen generation from hydrolysis of ammonia boraneArticleQ144492677326782WOS:000491622900005