Ozbudak, FerruhTemur, Burcu GulmezMathematics2024-07-052024-07-05202270925-10221573-758610.1007/s10623-022-01052-02-s2.0-85130380578https://doi.org/10.1007/s10623-022-01052-0https://hdl.handle.net/20.500.14411/1753Ozbudak, Ferruh/0000-0002-1694-9283We classify all permutation polynomials of the form x(3) g(x(q-1)) of F-q2 where g(x) = x(3) + bx + c and b, c is an element of F-q*. Moreover we find new examples of permutation polynomials and we correct some contradictory statements in the recent literature. We assume that gcd(3, q -1) = 1 and we use a well known criterion due to Wan and Lidl, Park and Lee, Akbary and Wang, Wang, and Zieve.eninfo:eu-repo/semantics/closedAccessFinite fieldsPermutation polynomialsAbsolutely irreducibleClassification of permutation polynomials of the form <i>x</i><SUP>3</SUP><i>g</i>(<i>x</i><SUP><i>q</i>-1</SUP>) of F<sub><i>q</i>2</sub> where <i>g</i>(<i>x</i>) = <i>x</i><SUP>3</SUP> + <i>bx</i> plus <i>c</i> and <i>b</i>, <i>c</i> ∈ F<i><sub>q</sub></i>*ArticleQ290715371556WOS:000800829500001