Gumusel, GuenseliKosan, M. TamerZemlicka, Jan2024-07-052024-07-0520230092-78721532-412510.1080/00927872.2023.21876422-s2.0-85150885495https://doi.org/10.1080/00927872.2023.2187642https://hdl.handle.net/20.500.14411/2494Zemlicka, Jan/0000-0003-3319-5193A ring R is called left fusible if every nonzero element is the sum of a left zero-divisor and a non-left zero-divisor, and R is called uniquely left fusible if for any a is an element of R there exists a unique left zero-divisor z such that a - z is non-left zero-divisor. We show that a left fusible ring R is uniquely left fusible if and only if either R is a domain or R has a unique non-left zero-divisor element.eninfo:eu-repo/semantics/closedAccessFusible ringregular elementunitzero-divisorPrimaryOn fusible ringsArticleQ351937643767WOS:0009569787000010