Ozdemir, HalimSarduvan, MuratOzban, Ahmet YasarGuler, NesrinMathematics2024-07-052024-07-052009260096-30031873-564910.1016/j.amc.2008.10.0172-s2.0-58249089281https://doi.org/10.1016/j.amc.2008.10.017https://hdl.handle.net/20.500.14411/999Özdemir, Halim/0000-0003-4624-437X; Güler, Nesrin/0000-0003-3233-5377Let T-1 and T-2 be two nonzero commuting n x n tripotent matrices and c(1), c(2) two nonzero complex numbers. Necessary and sufficient conditions for the tripotency and the idempotency of c(1)T(1) + c(2)T(2) are obtained. The problems considered here have also statistical importance when c(1), c(2) are real scalars and T-1, T-2 are real symmetric matrices. (C) 2008 Elsevier Inc. All rights reserved.eninfo:eu-repo/semantics/closedAccessIdempotent matrixTripotent matrixQuadratic formChi-square distributionDiagonalizationOn idempotency and tripotency of linear combinations of two commuting tripotent matricesArticleQ12071197201WOS:000262613200018