Ostrovska, SofiyaOstrovskii, Mikhail I.Mathematics2024-07-052024-07-05201920022-247X1096-081310.1016/j.jmaa.2019.01.0692-s2.0-85060904776https://doi.org/10.1016/j.jmaa.2019.01.069https://hdl.handle.net/20.500.14411/3393It is known that if finite subsets of a locally finite metric space M admit C-bilipschitz embeddings into l(p) (1 <= p <= infinity), then for every epsilon > 0, the space M admits a (C + epsilon)-bilipschitz embedding into l(p). The goal of this paper is to show that for p not equal 2, infinity this result is sharp in the sense that e cannot be dropped out of its statement. (C) 2019 Elsevier Inc. All rights reserved.eninfo:eu-repo/semantics/openAccessDistortion of a bilipschitz embeddingIsometric embeddingLocally finite metric spaceStrictly convex Banach spaceOn embeddings of locally finite metric spaces into <i>l<sub>p</sub></i>ArticleQ2Q24741666673WOS:000459748900033