Park, JongeeBouziani, AsmaePark, JongeeOzturk, AbdullahMetallurgical and Materials Engineering2024-07-052024-07-052021110927-77571873-435910.1016/j.colsurfa.2021.1270492-s2.0-85108664403https://doi.org/10.1016/j.colsurfa.2021.127049https://hdl.handle.net/20.500.14411/2005Bouziani, asmae/0000-0001-6045-3608; Park, Jongee/0000-0003-1415-6906; Ozturk, Abdullah/0000-0002-1525-1561Fluorinated Bi2O3 (F-Bi2O3) nanopowder was prepared via fluorination followed by thermal shock of alpha-Bi2O3 nanopowder. The XRD, FTIR, SEM, and DRS characterization techniques were employed to investigate the effects of fluorine (F) insertion into the alpha-Bi2O3 host and the thermal shock from different temperatures. The crystal structure, optical and photocatalytic properties of the F-Bi2O3 nanopowders prepared were researched. The XRD results confirmed the substitution of O2- with F-. The FTIR results revealed that the coordination of Bi atoms changed upon F- substitution. The incorporation of F into the alpha-Bi2O3 host and thermal shock did not influence the morphology but modified the band structure of alpha-Bi2O3, leading to a red-shift in the optical absorption edge. Also, the bandgap narrowed from 2.8 eV to 2.6 eV. The density functional theory calculation proved that the F 2p orbitals were positioned in the valence band (VB), resulting in broader and more spread bands for F-Bi2O3. The results suggested that the photoexcited charge carrier mobility in the valence band (VB) and conduction band (CB) are enhanced upon F insertion into alpha-Bi2O3. The photocatalytic efficiency of the synthesized nanopowders was assessed by the degradation of Bromocresol Green (BG) under visible light illumination. Photocatalytic activity improved upon fluorination. The F-Bi2O3 nanopowders thermally shocked from higher temperatures showed negligible photocatalytic performance. The best photocatalytic performance of 70% BG degradation was realized after 180 min visible irradiation for the F-Bi2O3 nanopowder thermal shocked from 500 degrees C.eninfo:eu-repo/semantics/closedAccessBi2O3FluorinationThermal shockPhotocatalysisNanopowderEffects of fluorination and thermal shock on the photocatalytic activity of Bi<sub>2</sub>O<sub>3</sub> nanopowdersArticleQ2626WOS:000685970400003