Karapinar, ErdalAgarwal, RaviAydi, HassenMathematics2024-07-052024-07-0520182227-739010.3390/math61102562-s2.0-85057063685https://doi.org/10.3390/math6110256https://hdl.handle.net/20.500.14411/2641KARAPINAR, ERDAL/0000-0002-6798-3254; Aydi, Hassen/0000-0003-4606-7211; Agarwal, Ravi P/0000-0003-0075-1704; , Hassen/0000-0003-3896-3809By giving a counter-example, we point out a gap in the paper by Karapinar (Adv. Theory Nonlinear Anal. Its Appl. 2018, 2, 85-87) where the given fixed point may be not unique and we present the corrected version. We also state the celebrated fixed point theorem of Reich-Rus-Ciric in the framework of complete partial metric spaces, by taking the interpolation theory into account. Some examples are provided where the main result in papers by Reich (Can. Math. Bull. 1971, 14, 121-124; Boll. Unione Mat. Ital. 1972, 4, 26-42 and Boll. Unione Mat. Ital. 1971, 4, 1-11.) is not applicable.eninfo:eu-repo/semantics/openAccesspartial metricinterpolative Reich-Rus-Ciric type contractionfixed pointInterpolative Reich-Rus Type Contractions on Partial Metric SpacesArticleQ1611WOS:000451313800042132