Ostrovska, SofiyaOstrovska, SofiyaMathematics2024-07-052024-07-052008150011-464210.1007/s10587-008-0079-72-s2.0-58049148064https://doi.org/10.1007/s10587-008-0079-7https://hdl.handle.net/20.500.14411/1030Due to the fact that in the case q > 1 the q-Bernstein polynomials are no longer positive linear operators on C[0, 1], the study of their convergence properties turns out to be essentially more difficult than that for q 1. In this paper, new saturation theorems related to the convergence of q-Bernstein polynomials in the case q > 1 are proved.eninfo:eu-repo/semantics/closedAccessq-integersq-binomial coefficientsq-Bernstein polynomialsuniform convergenceanalytic functionCauchy estimatesThe Sharpness of Convergence Results for <i>q</I>-bernstein Polynomials in The Case <i>q</I> > 1ArticleQ458411951206WOS:000261966900024