Ostrovska, SofiyaMathematics2024-07-052024-07-0520090025-584X1522-261610.1002/mana.2006107352-s2.0-60549106684https://doi.org/10.1002/mana.200610735https://hdl.handle.net/20.500.14411/994The paper focuses at the estimates for the rate of convergence of the q-Bernstein polynomials (0 < q < 1) in the complex plane. In particular, a generalization of previously known results on the possibility of analytic continuation of the limit function and an elaboration of the theorem by Wang and Meng is presented. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimeninfo:eu-repo/semantics/closedAccessq-Bernstein polynomialsrate of convergenceLipschitz continuous functionsmodulus of continuityanalytic continuationThe Convergence of <i>q</I>-bernstein Polynomials (0 &lt; <i>q</I> &lt; 1) in the Complex PlaneArticleQ2Q22822243252WOS:0002647471000079