Ostrovska, SofiyaMathematics2024-07-052024-07-05202001012-94052190-766810.1007/s13370-020-00767-42-s2.0-85078948860https://doi.org/10.1007/s13370-020-00767-4https://hdl.handle.net/20.500.14411/3117Ostrovska, Sofiya/0000-0003-1842-7953The investigation of the (p, q)-Bernstein operators put forth the problem of finding the conditions when a sequence of (p, q)-integers tends to infinity. This is crucial for justifying the convergence results pertaining to the (p, q)-operators. Recently, Cai and Xu found a necessary and sufficient condition on sequences {p(n)} and {q(n)}, where 0 < q(n) < p(n) <= 1, to guarantee that a sequence of (p(n), q(n))-integers tends to infinity. This article presents an elaborated version of their result.eninfo:eu-repo/semantics/closedAccess(p, q)-Integer(p, q)-Analogue of the Bernstein operatorConvergenceAn elaboration of the Cai-Xu result on (<i>p</i>, <i>q</i>)-integersArticleQ2315-6887890WOS:000510427600001