Ostrovska, SofiyaPirimoglu, Lutfi AtahanTuran, Mehmet2026-02-052026-02-0520261422-63831420-901210.1007/s00025-025-02593-12-s2.0-105027408187https://doi.org/10.1007/s00025-025-02593-1https://hdl.handle.net/20.500.14411/11119Pirimoğlu, Lütfi Atahan/0009-0002-8625-2083The focus of this work is on the properties of the unifying operator Uq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_q$$\end{document} on C[0, 1], which serves as a universal left factor in a decomposition of the limit q-Bernstein type operators, L infinity,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\infty ,q}$$\end{document}. More precisely, the factorization L infinity,q=Uq degrees TL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\infty ,q}= U_q\circ T_L$$\end{document}, where TL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_L$$\end{document} is a linear operator on C[0, 1] depending on L, holds. It is shown that this factorization facilitates the derivation of new results and/or the simplification of proofs for the known ones.eninfo:eu-repo/semantics/openAccessLimit q-Bernstein Type OperatorsPositive Linear OperatorsAnalytic ContinuationEntire Functionq-CalculusA Decomposition of the Limit Q-Bernstein Type Operators Via a Universal FactorArticle