Ostrovska, SMathematics2024-07-052024-07-052006170003-889X1420-893810.1007/s00013-005-1503-y2-s2.0-33644961254https://doi.org/10.1007/s00013-005-1503-yhttps://hdl.handle.net/20.500.14411/1203Let B-n (f, q; x), n = 1, 2, ... , 0 < q < infinity, be the q-Bernstein polynomials of a function f, B-n (f, 1; x) being the classical Bernstein polynomials. It is proved that, in general, {B-n (f, q(n); x)} with q(n) down arrow 1 is not an approximating sequence for f is an element of C[0, 1], in contrast to the standard case q(n) up arrow 1. At the same time, there exists a sequence 0 < delta(n) down arrow 0 such that the condition 1 <= q(n) <= delta(n) implies the approximation of f by {B-n(f, qn; x)} for all f is an element of C[0, 1].eninfo:eu-repo/semantics/closedAccess[No Keyword Available]The approximation by <i>q</i>-Bernstein polynomials in the case <i>q</i> ↓ 1ArticleQ3Q3863282288WOS:000236083800011