Ostrovska, SofiyaOstrovska, SofiyaMathematics2024-07-052024-07-05202201331-434310.7153/mia-2022-25-26https://doi.org/10.7153/mia-2022-25-26https://hdl.handle.net/20.500.14411/1843The article presents a quantitative refinement of the result of Baudier (Archiv Math., 89 (2007), no. 5, 419-429): the infinite binary tree admits a bilipschitz embedding into an arbitrary non-superreflexive Banach space. According to the results of this paper, we can additionally require that, for an arbitrary epsilon > 0 and an arbitrary non-superreflexive Banach space X, there is an embedding of the infinite binary tree into X whose distortion does not exceed 4 + epsilon .eninfo:eu-repo/semantics/openAccessDistortion of a bilipschitz embeddinglogarithmic spiralsuperreflexive Ba nach spacetest spaceDistortion in the Metric Characterization of Superreflexivity in Terms of the Infinite Binary TreeArticleQ2Q2252421431WOS:000829261700001