

REINFORCEMENT LEARNING FOR INTRUSION DETECTION

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF

ATILIM UNIVERSITY

AHMED MOHAMED SAAD EMAM SAAD

A MASTER OF SCIENCE THESIS
IN

THE DEPARTMENT OF COMPUTER ENGINEERING

APRIL 2021

 A
. SA

A
D

 A
TILIM

 U
N

IV
ER

SITY
 2021

REINFORCEMENT LEARNING FOR INTRUSION DETECTION

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

ATILIM UNIVERSITY

BY

AHMED MOHAMED SAAD EMAM SAAD

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

APRIL 2021

Approval of the Graduate School of Natural and Applied Sciences, Atilim University.

Prof. Dr. Ender KESKİNKILIÇ

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science in Computer Engineering Department, Atilim University.

Assoc. Prof. Dr. Gökhan
ŞENGÜL

Head of Department

This is to certify that we have read the thesis ”Reinforcement Learning for Intru-
sion Detection” submitted by Ahmed Mohamed Saad Emam Saad and that in our
opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master
of Science.

Asst. Prof. Dr. Beytullah
YILDIZ

Supervisor

Examining Committee Members:

Prof. Dr. Ali YAZICI
Software Engineering, Atilim University

Asst. Prof. Dr. Beytullah YILDIZ
Computer Engineering, Hacettepe University

Asst. Prof. Dr. Adnan ÖZSOY
Software Engineering, Atilim University

Date: April 30, 2021

I declare and guarantee that all data, knowledge and information in this document

has been obtained, processed and presented in accordance with academic rules and

ethical conduct. Based on these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Ahmed Mohamed Saad Emam Saad

ABSTRACT

Reinforcement Learning for Intrusion Detection

Saad, Ahmed Mohamed Saad Emam

M.S., Department of Computer Engineering

Supervisor : Asst. Prof. Dr. Beytullah YILDIZ

April 2021, 60 pages

Network-based technologies such as cloud computing, web services, and Internet of

Things systems are becoming widely used due to their flexibility and preeminence.

On the other hand, the exponential proliferation of network-based technologies ex-

acerbated network security concerns. Intrusion takes an important share in the secu-

rity concerns surrounding network-based technologies. Developing a robust intrusion

detection system is crucial to solve the intrusion problem and ensure the secure de-

livery of network-based technologies and services. In this thesis, a novel approach

was proposed using deep reinforcement learning to detect intrusions to make network

applications more secure, reliable, and e�cient. As for the reinforcement learning

approach, Deep Q-Learning is used alongside a custom-built Gym environment that

mimics network attacks and guides the learning process. A supervised deep learning

solution using a Long-Short Term Memory architecture is implemented to serve as

a baseline. The NSL-KDD dataset is used to create the reinforcement learning envi-

ronment and to train and evaluate the baseline model. The performance results of the

proposed reinforcement learning approach show great superiority over the baseline

model and the other relevant solutions from the literature.

Keywords: Reinforcement learning, Network Security, Intrusion Detection System,

iii

Long Short-Term Memory, Deep Q-learning

iv

ÖZ

Saldırı Tespiti için Takviyeli Öğrenme

Saad, Ahmed Mohamed Saad Emam

Yüksek Lisans, Bilgisayar Mühendisliği

Tez Yöneticisi : Dr. Öğr. Üyesi Beytullah Yıldız

Nisan 2021, 60 sayfa

Bulut bilişim, web servisleri ve Nesnelerin İnterneti sistemleri gibi ağ tabanlı teknolo-

jiler, esneklikleri ve üstünlükleri nedeniyle yaygın olarak kullanılmaktadır. Öte yan-

dan, ağ tabanlı teknolojilerin katlanarak büyümesi, ağ güvenliği sorunlarının büyüklüğünü

artırmaktadır. İzinsiz giriş, ağ tabanlı teknolojilerin güvenliğinin önemli bir parçasıdır.

Sağlam bir saldırı tespit sistemi uygulamak, izinsiz giriş sorununu çözmek ve ağ

tabanlı teknolojilerin ve hizmetlerin güvenli bir şekilde sunulmasını sağlamak için

çok önemlidir. Bu tezde, izinsiz girişleri tespit etmek ve ağ uygulamalarını daha

güvenli, güvenilir ve verimli hale getirmek için pekiştirmeli öğrenmeyi kullanan yeni

bir yaklaşım öneriyoruz. Takviye öğrenme yaklaşımı olarak, ağ trafiği saldırılarını

taklit eden ve öğrenme sürecine rehberlik eden, özel olarak uyarlanmış bir Gym

ortamının yanında kullanılan derin Q-öğrenme kullanılmaktadır. Uzun-Kısa Süreli

Bellek kullanan denetimli bir derin öğrenme çözümü, karşılaştırma için temel yaklaşım

alarak uygulanmıştır. NSL-KDD veri kümesi, takviye öğrenme ortamını oluşturmak

için kullanılmakta olup temel modeli eğitmek ve değerlendirmek için de kullanılır.

Önerilen pekiştirmeli öğrenme yaklaşımının performans sonuçları, temel modele ve

literatürdeki diğer çözümlere göre büyük bir üstünlük göstermektedir.

v

Anahtar Kelimeler: Takviyeli Öğrenme, Ağ Güvenliği, Saldırı Tespit Sistemi, Uzun

Kısa Süreli Bellek Sinir Ağı, Derin Q-öğrenme

vi

To my dear mother

vii

ACKNOWLEDGMENTS

I am grateful to my supervisor, mentor, and friend, Asst. Prof. Dr. Beytullah YILDIZ

without whom this thesis and getting this degree will not be possible. His knowledge,

ideas, motivation, help, and patience kept me going even in my most desperate times.

It was a pleasure working with him and being one of his students.

I would like to show my gratitude and appreciation to my mother and father for the

unconditional support throughout my educational journey and my life, without whom

getting this degree will not be possible.

I want to show my appreciation to my dear friend Hisham for helping in proofreading

this thesis.

Finally, I would like to thank everyone from the academic and administrative sta↵ at

Atilim University for the work they do for international students to make the educa-

tional process as convenient as possible.

viii

TABLE OF CONTENTS

ABSTRACT . iii

ÖZ . v

DEDICATION . vii

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xii

LIST OF FIGURES . xiii

LIST OF ABBREVIATIONS . xiv

CHAPTERS

1 INTRODUCTION . 1

2 BACKGROUND AND RELATED WORK 5

2.1 Background . 5

2.1.1 Intrusions . 7

2.1.1.1 Probe 7

2.1.1.2 DoS 8

2.1.1.3 U2R 8

2.1.1.4 R2L 8

2.1.2 Network Security Systems 8

2.1.2.1 Intrusion Prevention 8

2.1.2.2 Intrusion Response 8

2.1.2.3 Intrusion Detection 9

2.1.3 Intrusion Detection Systems 9

ix

2.1.3.1 Signature-Based Intrusion Detection Sys-
tem 9

2.1.3.2 Anomaly-Based Intrusion Detection Sys-
tem 9

2.2 Machine Learning Approaches 9

2.2.1 Supervised Learning 10

2.2.2 Unsupervised Learning 10

2.2.3 Reinforcement Learning 10

2.2.3.1 Model-Free vs. Model-Based 10

2.2.3.2 Monte Carlo Method 11

2.2.3.3 Temporal Di↵erence Learning 11

2.2.3.4 Q-Learning 11

2.2.3.5 Deep Q-Learning 11

2.3 Related Work . 12

3 METHODOLOGY . 19

3.1 Reinforcement Learning . 20

3.2 Markov Decision Process 21

3.3 Q-Function and Q-Values 22

3.4 Deep Reinforcement Learning Agent 23

3.4.1 Exploration Vs Exploitation 24

3.4.2 Experience Replay 25

3.5 Gym Environment . 29

3.5.1 Gym Environment Structure 29

3.5.2 NSL-KDD Dataset 31

3.6 Deep Learning Baseline Solution Using LSTM 35

3.6.1 LSTM Baseline Solution Data Preprocessing . . . 36

3.6.2 LSTM Model Architecture 37

4 EVALUATION AND RESULTS . 39

4.1 Experimental Settings . 40

4.2 Evaluation Metrics . 41

x

4.3 Reinforcement Learning Model Evaluation 43

4.4 Reinforcement Learning Experimental Results 43

4.5 LSTM Experimental Results 48

4.6 Experimental Results . 49

4.7 Performance Comparison With the Baseline Approach 49

4.8 Deep Dive Into the Results 50

4.9 Performance Comparison With Others Work 51

5 CONCLUSION . 53

REFERENCES . 56

xi

LIST OF TABLES

TABLES

Table 3.1 Deep Q-learning Algorithm . 26

Table 3.2 State, Action and Reward as Represented in the Environment 30

Table 3.3 Main Attack Types and their Subcategories in NSL-KDD Dataset . . 32

Table 3.4 The Di↵erent 42 Feature in the NSL-KDD Dataset 33

Table 4.1 Aggregated Results Comparison 49

Table 4.2 Aggregated Results Comparison 50

Table 4.3 Aggregated Results Comparison 52

xii

LIST OF FIGURES

FIGURES

Figure 2.1 Cloud Market Share 2017 and 2018 [1] 6

Figure 2.2 Cloud Market Share 2020 [2] . 6

Figure 2.3 Economic Cost of Cybercrimes 2013 to 2020 [7] 7

Figure 3.1 Reinforcement Learning [40] . 21

Figure 3.2 Q-Learning Vs Deep Q-Learning [41] 23

Figure 3.3 Target Q-Values . 24

Figure 3.4 Experience Replay . 25

Figure 3.5 Activity Chart of Reinforcement Learning Agent 28

Figure 3.6 Single Episode with 100 Timesteps Provided by G. Brockman et

al. [45] . 30

Figure 3.7 Single Episode with 1 Timestep of Our Intrusion Detection RL Code 31

Figure 3.8 One Hot Encoding of Protocol Type Feature 34

Figure 3.9 LSTM Handling time-series Data [49] 35

Figure 3.10 Label Encoding . 36

Figure 3.11 LSTM Architecture [50] . 37

Figure 4.1 Confusion Matrix [52] . 42

Figure 4.2 RL Agent Learning Curve . 44

Figure 4.3 Results of Experiment 1 of Deep Q-Learning RL Model 45

Figure 4.4 Results of Experiment 2 of Deep Q-Learning RL Model 46

Figure 4.5 Results of Experiment 3 of Deep Q-Learning RL Model 47

Figure 4.6 Results of Experiment 1 of LSTM Model 48

xiii

list of abbreviations

RL : Reinforcement Learning

IDS : Intrusion Detection System

DoS : Denial of Service

U2R : User to Root

R2L : Remote to Local

TP : True Positive

TN : True Negative

FP : False Positive

FN : False Negative

TPR : True Positive Rate

AWS : Amazon Web Service

LSTM : Long Short-Term Memory

QL : Q-Learning

MDP : Markov Decision Process

DQN : Deep Q-Network

DDQN : Double Deep Q-Network

PG : Policy Gradient

AE-DQN : Adversarial/Multi Agent Reinforcement Deep Q-Learning

AE-RL : Adversarial Environment using Reinforcement Learning

A3C : Asynchronous Advantage Actor Critic

Dueling DDQN : Dueling Double Deep Q-Network

xiv

CHAPTER 1

INTRODUCTION

Network-based computer systems and technologies like web services, cloud comput-

ing, and Internet of Things (IoT) systems are becoming more popular. The most

famous network-based technology is cloud services. This popularity is due to the

growing number of cloud service providers and the astonishing technological achieve-

ment in these services over the past few years. These technological achievements

opened the doors to alternative possibilities and many changes in the way companies

and di↵erent organizations plan to build their Information Technology (IT) infras-

tructure. The flexibility and the state-of-the-art services that cloud service providers

o↵er make it easy for the di↵erent organizations to get the services needed without

worrying about the hardware side of the infrastructure. For example, the hardware in-

frastructure requires utility bills to be paid and a suitable environment for maintaining

its peak performance. Another reason for its popularity is the easy-to-use models that

technology giants like Microsoft, Google, Amazon, IBM, and Alibaba provide to their

customers. Services like Amazon Web Service (AWS), IBM Cloud, Microsoft Azure,

Alibaba Cloud, and Google Cloud provide are becoming the ultimate replacement

and solution for handling and providing the infrastructure of computer systems, stor-

age space, and computational power that is needed by agencies, companies, organiza-

tions, institutions, and governments. Those services can be acquired at a remarkably

a↵ordable cost, and that is the primary reason for their fame among contemporary era

organizations and government agencies.

Network-based technologies like cloud computing services are prone to intrusion, and

the growing popularity of network-based systems made the intrusion issue worse. We

can get an estimate on the expansion magnitude of network-based technologies and

1

in return the intrusion problem by examining the market of specific network-based

technologies such as cloud computing services. It is evident from the massive in-

crease in the market and the revenue of cloud services from the year 2017 in which

the revenue estimate was around 54.9 billion US dollars [1] to the year 2020 in which

the revenue estimate was around 129 billion US dollars [2] that network-based tech-

nologies are getting a lot of attraction, which increases the scale of the intrusion issue.

This increasing scale comes with significant economic costs, which has been con-

firmed by two studies carried out by McAfee cyber-security firm. The two studies

were conducted over a 6-year period and show the alarming increase in the economic

cost of cyber-crimes. The first study shows that in 2014 the cost of cyber-attacks was

around 475 billion US dollars [3], and the second study shows that in 2020 the cost of

cyber-attacks was almost 1 trillion US dollars [4].

Since most of the network-based technologies and resources are obtained from a re-

mote service provider that is not locally present through a medium, this raises the

question of how to secure the medium used to obtain these services from intrusion,

which in this case is the network system. The answer will significantly reduce the eco-

nomical cost caused by intrusions and cyber-crimes. Securing that medium requires

an absolute necessity of a modern solution to detect intrusions using a particular in-

trusion detection system (IDS). Traditional rule-based intrusion detection systems like

snort intrusion detection system [5] were used to tackle and solve the intrusion prob-

lem. However, with the increase in novel attacks and the continuous change in the

attack types and styles, rule-based intrusion detection systems are vulnerable. Even

with rapid updates to their rules, they can not keep up with the continuous change in

malicious attacks. Therefore, creating a novel, scalable, and adaptive approach for

detecting intrusions in network systems that copes with the new malicious attacks is a

necessity. This is where machine learning comes into place with its adaptability and

flexibility. It can provide a solution for the intrusion issue addressed before and solve

the limitation of rule-based intrusion detection systems. Although machine learning

o↵ers a solution, not all machine learning approaches are created equal. Machine

learning can be categorized into three major topics: the first is reinforcement learn-

ing, the second is unsupervised learning and the third is supervised learning. Many

solutions were developed for intrusion detection using the three di↵erent machine

2

learning approaches.

The aim of this thesis is to provide an answer to the mentioned problem by introduc-

ing and applying a novel reinforcement learning approach and solution for intrusion

detection in network systems. Another objective is to gain an insight into the perfor-

mance of the novel approach compared to a traditional approach and other relevant

work and to achieve better results.

In this thesis, we propose a novel approach using reinforcement learning because,

in theory, it is superior to other machine learning approaches in intrusion detection

for the following reasons. First, it can go beyond the dataset by solving the labeling

issue. Second, it can generalize and approximate when dealing with large observation

space or features. Third, it can scale and adapt to numerous attack patterns, and it

is not volatile to changes. The novel machine learning approach introduced utilizes

a reinforcement learning-based algorithm called Deep Q-Network. Reinforcement

learning utilizes an environment to train an agent. We use OpenAI Gym library to

build the environment. The Gym environment guides the learning process through

positive and negative rewards and makes use of the NSL-KDD intrusion detection

dataset as a source of network tra�c. In other words, the reinforcement learning

agent learns from its previous actions by observing the states and rewards from the

environment, so it can perform better actions in the future by maximizing the reward

it gets from the environment. The reinforcement learning agent uses deep neural

networks as a function approximator for Q-values associated with decision (action)

making. For the NSL-KDD dataset, it is the largest and the most diverse in terms of

attack types, and it fits the eleven criteria for an appropriate IDS dataset [6]. It is well-

suited and serves the goal of this research. The dataset goes through preprocessing

stage before being used as the source of encoded network tra�c.

The proposed approach will be compared with a supervised learning approach that

uses Long-Short Term Memory (LSTM) neural network which will serve as a base-

line. This approach is based on the idea of recognizing attacks from old network tra�c

attack data upon which it can detect relatively similar attacks. The same dataset used

for reinforcement learning is used for the baseline supervised learning approach after

some preprocessing and encoding to get the most relevant features from the dataset

3

and to improve the overall performance of the approach.

The main contribution of this study is first our novel reinforcement learning approach

that o↵ers a significant improvement in terms of metrics, such as accuracy, recall, and

precision compared to the baseline solution and other relevant works in the literature.

Second, we create a customized environment that is more expressive about intrusions

and has more resolution. This is one of the key elements for the success of the re-

inforcement learning model. Finally, we perform several hyper-parameter tunings to

improve intrusion detection.

This thesis is organized as follows. The second chapter provides a brief background

and an overview of the related work that uses machine learning techniques to detect

intrusions and some other work of di↵erent applications of reinforcement learning

applied in di↵erent areas. The third chapter explains the methodology, including the

proposed model, the dataset used, and the baseline model. The fourth chapter shows

the experimental results and the overall evaluation. The fifth and final chapter provides

conclusions and suggested future work.

4

CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter presents a background and literature review to provide the important

concepts as well as previous related studies in the area covered by this thesis. The

chapter also reviews some existing solutions for intrusion detection and investigates

their performance and the various used techniques. Moreover, this chapter concisely

introduces an overview of intrusion, di↵erent types of attacks, and detection systems.

Finally, an overview of machine learning main aspects is also presented.

2.1 Background

The increasing adoption of network-based technologies leads to the increase in net-

works as part of every modern technology. This gave network systems a vital role

in every computer system application. The increase in network-based applications

can be seen from the change in the market share of network-based technologies like

cloud services from 2017 as shown in Figure 2.1 [1] to the year 2020 as shown in

Figure 2.2 [2]. This implies that network-based technologies are being adopted more

frequently over time. Security can be defined as the protection of information in an

automated way to ensure its confidentiality, availability, and integrity. Networks are

known to be targeted by various intrusion attacks, which threaten the network and the

security of its applications. The trend of network and cyber threats keeps growing

each year as shown by a report done by McAfee cyber-security firm [7]. In the next

sections, intrusion detection systems, intrusion types, and solutions will be explained.

5

Figure 2.1 Cloud Market Share 2017 and 2018 [1]

Figure 2.2 Cloud Market Share 2020 [2]

6

Figure 2.3 Economic Cost of Cybercrimes 2013 to 2020 [7]

2.1.1 Intrusions

Network intrusion refers to the abnormal or suspicious activity on a network system.

Intrusions can vary in a long range but most of them fall under four main categories.

These categories are represented in the NSL-KDD dataset used in this thesis.

• Intrusion Main Categories

– Probe

– Denial of Service (DoS)

– User to Root (U2R)

– Remote to Local (R2L)

2.1.1.1 Probe

It is a type of intrusion attack with the goal of stealing relevant information that will

help in a future attack. Most attacks start with Probe attack.

7

2.1.1.2 DoS

DoS attack aims to overflow the network system with unnecessary tra�c that it can

not handle in order to stop actual users from reaching the target network.

2.1.1.3 U2R

U2R attack is the attempt of a normal user to acquire admin privileges over a network

system.

2.1.1.4 R2L

In R2L attack, the intruder tries to gain normal user privileges to a remote network

that he/she does not have permission to access. It is considered the attack preceding

U2R.

2.1.2 Network Security Systems

Network security systems that deal with intrusions can be categorized into three main

defense mechanisms: intrusion prevention, intrusion response, and intrusion detec-

tion.

2.1.2.1 Intrusion Prevention

Intrusion prevention system mechanism works to stop the attack from happening or

make the targeted system cope with the attack without a↵ecting the system users.

2.1.2.2 Intrusion Response

Intrusion response system attempts to mitigate the damage caused by the intruders to

the network system.

8

2.1.2.3 Intrusion Detection

An intrusion detection system works to monitor network tra�c for suspicious or ab-

normal activities and sends an alarm if suspicious activity is detected.

2.1.3 Intrusion Detection Systems

Intrusion detection systems work in di↵erent ways and have many architectures. The

most common two types of network intrusion detection systems are signature (misuse)

based intrusion detection system and anomaly-based intrusion detection system.

2.1.3.1 Signature-Based Intrusion Detection System

Signature-based intrusion or misuse detection system works similarly to a rule-based

system. It can recognize attacks’ fingerprints that were previously introduced to it.

However, it fails when detecting unintroduced or novel attacks.

2.1.3.2 Anomaly-Based Intrusion Detection System

Anomaly-based intrusion detection system attempts to deal with a novel attack by

learning the normal pattern of network tra�cs, and any deviation from that normal

pattern is considered as an intrusion. The downside of this system is its high sensitivity

that leads to a high false positive rate.

2.2 Machine Learning Approaches

Machine learning is building a model or an algorithm that improves, makes decisions,

and automatically learns without being explicitly programmed through experiences

and exposure to data. It is categorized into three main topics: supervised learning,

unsupervised learning, and reinforcement learning.

9

2.2.1 Supervised Learning

In supervised learning, the labeled dataset is presented to the algorithm in the training

process. After learning from the dataset, the model can make predictions. In the case

of an IDS, using a supervised learning approach will work similarly to a signature-

based intrusion detection system.

2.2.2 Unsupervised Learning

In unsupervised learning, the algorithm is trained on unlabeled data, and in the train-

ing process, it tries to detect patterns from the data. The disadvantage of using unsu-

pervised learning in an IDS is the high rate of false positives and negatives.

2.2.3 Reinforcement Learning

Reinforcement learning is a type of machine learning that has the ability to learn

through trial-and-error interaction with a dynamic environment. Reinforcement learn-

ing consists of two main components: the agent and the environment. The learning

starts when a state is observed by the agent, and an action is taken, which is then

rewarded. This learning process occurs recursively by focusing on maximizing the

reward until learning is terminated.

2.2.3.1 Model-Free vs. Model-Based

Reinforcement learning requires an environment for agents to interact with. Depend-

ing on the environment, di↵erent methods can be chosen. Model-based is a method

used when predictions can be made based on expected values of the environment. On

the other hand, Model-free is a method used when the system is constantly storing

past experiences.

10

2.2.3.2 Monte Carlo Method

Monte Carlo Method is a model-free method. This is an experience-based method

in which we just focus on the value functions directly from the interactions with the

environment. It depends on calculating the value function of a certain policy directly

from the episodes (group of states) of experience.

2.2.3.3 Temporal Di↵erence Learning

Temporal-Di↵erence learning is a model-free method. The di↵erence between the

Monte Carlo method and the Temporal-Di↵erence learning is the frequency of values

update. In Temporal-Di↵erence, the value updates at each state, unlike the Monte

Carlo method which updates the value at the end of an episode.

2.2.3.4 Q-Learning

Q-learning is a model-free reinforcement learning and Temporal-Di↵erence learning

method. It introduces a new function which is called Q-function. The value function

exploits each state quality and in the Q-function assigns a value to every action taken

by the agent at all states.

2.2.3.5 Deep Q-Learning

The mentioned Q-learning is a powerful algorithm, but it can not estimate values of

unknown states. Hence, some Q-values can not be calculated. This is where another

algorithm called Deep Q-Network (DQN) comes into place. It deals with this problem

of lack of generality. A neural network is implemented, where the states are the

input and the estimates of Q-values for each action are the output. Deep Q-Learning

algorithm is used in this thesis and will be explained in detail in the next chapter.

11

2.3 Related Work

Bouzida and Cuppens [8] compared two supervised learning approaches. The first

approach was decision tree and the second one was neural network. Both of the ap-

proaches were tested on the KDD 99 dataset and over real-time network tra�c. It was

concluded that both neural networks and decision tree performed well in generaliza-

tion while decision tree performed better in detecting novel attacks.

An approach that merges an unsupervised learning algorithm (K-means) for clustering

alongside a supervised learning one (support vector machine or SVM) for classifica-

tion was introduced by Aljamal et al. [9]. The K-means algorithm clustered the data

from network tra�c into 64 clusters, and then the SVM algorithm used to categorize

these clusters into two categories: normal and abnormal. The evaluation was done

using the benchmark UNSW-NB15 dataset. The overall performance was low when

compared with other researches, and the false positive rate was very high.

A deep learning approach was proposed by Parampottupadam and Moldovann [10].

The approach is making use of two deep learning models: binomial classification and

multinomial model. The binominal method is used to identify intrusion, while the

multinominal model is used to categorize the attack according to its type. The models

were built using H2O and Deeplearning4j libraries, and they used only the NSL-KDD

dataset to evaluate the proposed approach.

An intrusion detection approach for IoT based on an artificial neural network was

proposed by Hodo et al. [11]. This research was based on gathering and analyzing

data from a real normal IoT network and then training the artificial neural network

using the internet packet traces. If the incoming network tra�c was unrecognizable

by the neural network, it sends a warning to the responsible personnel. This research

was only used to detect DDoS and DoS attacks.

Bostani and Sheikhan [12] suggested a multicomponent intrusion detection system

with a centralized module that uses an unsupervised machine learning approach (Op-

timum Path Forest) based on a MapReduce approach. This intrusion detection system

was designed to detect only two types of attacks, which are selective-forwarding and

sinkhole attacks. Moreover, it can expand to detect wormhole attacks. The overall

12

performance was 76.19% true positive rate.

A proposal included combining feature selection alongside a supervised learning clas-

sifier (SVM) was introduced by Pervez and Farid [13]. They evaluated their model

using only the NSL-KDD dataset. They only used one algorithm and one dataset to

test their approach.

A two-tier intrusion detection system for di↵erentiating between normal and abnor-

mal tra�c patterns using a supervised machine learning approach (KNN) as a classi-

fier combined with reinforcement learning that was used to decrease the false-positive

rate was introduced by Divyatmika and Sreekesh [14]. Additionally, Multilayer Per-

ceptron (MLP) algorithm was used for misuse detection, and an unsupervised learning

approach was used to build a database which can be utilized to detect new attacks.

Mukkamala et al. [15] compared the use of a neural network and supervised learning

technique namely SVM to build an intrusion detection solution. First, they intended

to build a classifier using patterns or features from user behavior in order to identify

anomalies. They used the KDD dataset as a benchmark, and they achieved high accu-

racy on the test data of nearly 99%. The time taken for the support vector machine to

train was shorter than that of the neural network, but both approaches were not tested

further on data other than the test data.

Sinclair et al. [16] suggested an attempt to automate the process of anomaly and in-

trusion detection. They used a genetic algorithm and decision tree to generate rules to

be used later as a network tra�c classifier which detects anomalies. This approach,

however, was never truly tested on a real dataset.

Lee and Stolfo [17] attempted to identify patterns and features that describe normal

user behavior. They then created a classifier to identify anomalies through a detection

agent that uses data mining techniques such as association rules algorithm and fre-

quent rule algorithm to recognize anomalies. As in [16], this approach was also never

tested on real data.

Sommer and Paxson [18] stated some guidelines for the future of using ML techniques

to detect intrusions under four main principles. These principles are understanding the

threat model, keeping the scope narrow, reducing the costs, and evaluating the model.

13

They also stated what researchers should do in order to contribute to this ongoing

research area.

An arbitrary model consisting of two parts: an unsupervised clustering algorithm and

a traditional anomaly detection solution was proposed by Zanero and Savaresi [19].

The former attempted to reduce tra�c payload to a traceable size, and the latter’s ef-

ficiency depended on the data available. Their model was tested on data generated by

a MIT laboratory. They compared the performance of various candidate algorithms

(S.O.M., principal direction, and K-means) to validate their proposed model. How-

ever, the second part on the model was tested on preliminary results from previous

studies, and the full architecture was not present for a full test.

Chen et al. [20] compared the performance of two machine learning techniques for

intrusion detection: the first one used a neural network, and the second one used

SVM. Both approaches were tested on 1998 DARPA BSM audit data. The SVM

solution’s performance was superior to the ANN one, but the two models were not

deployed on a real-time system for evaluation.

A supervised learning technique to detect intrusions based on Bayes’ theorem, which

deals with intrusions as probabilities was proposed by Scott [21]. The model was not

tested on a dataset, and it is not fully automated and functional as it requires human

interaction to help the system identify intrusions.

Li and Guo [22] implemented a supervised machine learning approach (KNN) using

fewer data and features for training than other approaches, achieving higher accuracy

and lower FP rate. The researchers used the KDD Cup 1999 dataset for proving

the e↵ectiveness of their proposal. They tested di↵erent K values, and each K value

achieved nearly the same accuracy of more than 99% on the test dataset. However, it

was not evaluated based on data other than the test dataset.

Tsai et al. [23] provided a survey of the researchers that implemented machine learn-

ing techniques for intrusion detection from the year 2000 to the year 2007. The survey

reviewed 55 research papers based on the proposed model under three clusters (hy-

brid, single, and ensemble classifiers).

A deep reinforcement learning-based model to detect intrusions in the cloud environ-

14

ment with a low FP rate was suggested by Sethi et al. [24]. The researchers used

the UNSW-NB 15 dataset as a benchmark and the Chi-square algorithm for feature

selection. The proposed model consisted of three parts: administrator network, host

network, and agent network. The researchers also combined their model with some

other classifiers, achieving an accuracy of 83% and a false positive rate of 2.6%. The

model, on the other hand, was not deployed or evaluated on a real cloud environment.

Liang et al. [25] suggested a hybrid approach of a multi-agent reinforcement learn-

ing model consisting of three parts: data management, analysis and response modules,

and data collection. The analysis modules are based on deep learning to detect anoma-

lies from the transport layer in the network. The dataset used for evaluation was the

NSL-KDD dataset. The anomaly detection accuracy of 98% was achieved in an IoT

environment. The ability for the proposed model to classify di↵erent types of attacks

was accurate by 97%. Nevertheless, the model was only tested in an IoT environment

where the types of attacks are very limited.

A distributed deep learning model to detect attack patterns after training on a dataset to

di↵erentiate the attacks from the normal tra�c was proposed by Diro and Chilamkurti

[26]. The NSL-KDD dataset was used after being encoded for training and evaluation.

They also compared the performance of centralized and distributed models with some

other shallow learning algorithms. They achieved an accuracy of more than 99%.

The paper, however, only introduced the distributed nature of an intrusion detection

system, which consists of a master node and cooperative nodes that can propagate

updates through the master node. This distributed nature can reduce computation

overhead and overfitting, although this approach was not proven e↵ective and was not

investigated thoroughly.

Du et al. [27] suggested an anomaly detection approach using Long Short Term Mem-

ory. They called it DeepLog, which depends on analyzing the normal logs as a natural

language sequence (structured language) so that it can recognize the normal pattern

and then which pattern deviated from the normal one. They also demonstrated how

it can be updated so it can adapt to novel attacks. They used Blue Gene/L dataset,

which is composed of supercomputer logs. One of the downsides of the research is

the high computational overhead and the massive hardware it needs to function.

15

A reinforcement learning-based model which is using an o↵-policy approach (actor-

critic) for intrusion detection was introduced by Sagha et al. [28]. They also used

Temporal Di↵erence learning to learn the rules and the appropriate behavior from a

control system, and they claim it can adapt to novel attacks.

A reinforcement-based model to defend users against network attacks was proposed

by Xia et al. [29]. The proposed model consists of two agents: one that works as a de-

fending agent and the other works as an attack generating agent. The paper’s approach

was new but it was theoretical and was not tested on any dataset. The functionality

of the proposed model and the availability of datasets make the success of this model

questionable.

Koduvely [30] proposed making a Gym environment based on the OpenAI Gym envi-

ronment concept to detect network intrusions using reinforcement learning and policy

gradient model, which will be used later for comparison purposes with the approach

suggested in this thesis. The proposed approach works by solving the environment,

and for evaluation a ROC curve is used. The proposed solution’s performance was not

evaluated, and the FP and FN rates were unknown. The research also suggests im-

plementing other techniques such as deep neural network and deep and wide neural

network, but there was no continuation on this research.

A new feature selection from the NSL-KDD dataset approach called SFSDT, which

utilizes two di↵erent approaches for detection of intrusions in network tra�c: forward

selection algorithm and decision tree model was proposed by Le et al. [31]. Then, it

feeds those features to three di↵erent neural networks that use di↵erent architectures

(Gated Recurrent Unit, Recurrent Neural Network, and Long Short-Term Memory).

The LSTM had the best performance when tested on some types of attacks compared

to other models. The authors claim that their approach reduced the time required for

the overall computation.

A novel approach using deep reinforcement learning to detect attacks in a network

without requiring to solve an environment by directly using batches from two datasets

(NSL-KDD an AWID) separately was suggested by Lopez-Martin et al. [32]. This

approach proposes a new reward method which is rewarding the model in the train-

ing process, whether the detection was correctly performed or not. They used four

16

di↵erent approaches to implement their proposal, which are Policy Gradient, Double

Deep Q-Network (DDQN), Actor-Critic, and Deep Q-Network (DQN). They claim

that the top performance was achieved by the Double Deep Q-Network approach and

that they were able to decrease the overall computational time required compared to

traditional machine learning approaches.

Tang et al. [33] suggested a novel intrusion detection model utilizing the LightGBM

algorithm as a feature selector, which chooses features based on an assigned score to

each feature from the NSL-KDD dataset. It then feeds the selected feature to several

encoders, which are autoencoder, variation autoencoder, and denoising autoencoder

for the training process and anomaly detection. The research also compared several

traditional machine learning approaches (XGBoost, Decision Tree, Random Forest,

K-Nearest Neighbor and Gradient Boosting decision tree) to the proposed model. The

performance was evaluated using the F1-Score evaluation approach. The performance

of the auto encoder was the highest with almost 90% accuracy.

An approach called reinforcement in-game learning was used by Jeerige et al. [34].

To get a deep understanding of reinforcement learning, they re-implemented research

papers’ approaches and compared the performance of each one. They created an agent

which can solve an environment which is the Atari 2600 game (Breakout), using two

reinforcement learning algorithms (Actor-Critic and Deep Q-Learning). The actor-

critic model performed better than the Deep Q-Learning Model.

Coronato et al. [35] suggested the use of reinforcement learning in medical software

systems, which they claim can put the risk of processes ran by medical software at

minimum. They implemented a use case of Nuclear Medicine where the entire process

was run by a reinforcement learning agent without any human involvement for full

automation and without exposing medical sta↵ to radiation.

Naderi et al. [36] suggested using deep reinforcement learning in robotics, where they

worked on handling the movement of the multiple limbs of a climbing humanoid

robot.

A deep reinforcement learning solution, namely Double Q-Learning for speed control

in autonomous vehicles was proposed by Zhang et al. [37]. The agent decides the

17

appropriate speed based on solving a Gym environment that uses real data.

18

CHAPTER 3

METHODOLOGY

This thesis proposes a novel approach for intrusion detection in network systems,

which utilizes a deep reinforcement learning algorithm and network tra�c in the NSL-

KDD intrusion detection dataset. This approach can be later deployed into di↵erent

network intrusion detection systems that are more flexible, resilient, and e�cient. One

of our goals is to pave the way for other researchers to implement their approaches us-

ing the custom-built environment. Another aim is to gain insight into the performance

of the developed deep reinforcement learning approach in intrusion detection.

The reinforcement learning approach used for learning in this thesis is Deep Q-Learning.

This approach includes building an RL agent using a reinforcement learning algorithm

known as Deep Q-Network. It is used as part of the agent’s structure to detect intru-

sions. Moreover, the approach includes creating and setting up an environment to

guide the agent’s learning process. The environment created uses the network tra�c

in the NSL-KDD dataset and was inspired by an environment introduced by Hari Ko-

duvely [30]. The environment was custom-built to suit the RL approach developed in

this thesis.

The baseline solution implemented in this thesis is a supervised deep learning ap-

proach, namely Long-Short Term Memory neural network structure. This solution is

trained on the same dataset used in the reinforcement learning approach for perfor-

mance comparison purposes.

19

3.1 Reinforcement Learning

Reinforcement learning is an evolutionary machine learning approach that simulates

the learning process in living organisms [38]. Learning is a process in which living

organisms increase their knowledge in the scope of di↵erent tasks by accumulating

knowledge that enhances their capability on how to perform certain tasks better as

their knowledge increases. Similarly, machine learning algorithms can emulate living

organisms’ learning process through their exposure to data, which in this scenario

simulates the accumulative knowledge living organisms acquire overtime.

In reinforcement learning, the algorithm does not need to have prior domain knowl-

edge and can learn over time by trial and error [39]. The algorithm in that scenario

represents the brain in living organisms. The main purpose in reinforcement learning

is trying to develop that brain, which in this case is called an agent, and this is where

the algorithm resides.

The main purpose of the agent in reinforcement learning is to sum up the reward

over time and get as many positive rewards as possible. This process simulates doing

correct actions in certain tasks given the prior knowledge accumulated in the brain of

a living organism.

In reinforcement learning, the agent interacts with an observation acquired from the

environment (see Figure 3.1), which is called a state. In living organisms, such state

represents the interaction with the real world whereby experience or knowledge is

gained. Building a well-structured reinforcement learning environment is paramount

for optimizing the agent’s learning process and performance in a specific domain.

In the context of this research, the environment includes the network intrusion detec-

tion dataset and evaluates the agent’s actions (right or wrong), the observation rep-

resents the network tra�c, and the agent represents the detection mechanism that

decides whether the network tra�c is an intrusion or not.

In the upcoming sections, we will explain some reinforcement learning concepts and

its four main elements, which are agent, environment, state, and reward, in the scope

of this research.

20

Figure 3.1 Reinforcement Learning [40]

3.2 Markov Decision Process

Markov Decision Process, which can also referred to as MDP, is a sequential decision-

making process that depends on several factors. In the context of reinforcement learn-

ing, it depends on five factors: the environment, the agent, all the states provided by

the environment, all possible actions that the agent can perform, and all the rewards

that the agent acquires from the environment after performing an action.

The sequential process starts by the agent observing a state from the environment.

Depending on the state, the agent selects an action to perform. Afterwards, the agent

gets a reward from the environment, and then another state is initiated. This entire

process can be optimized in order for the agent to get the maximum accumulative

reward, not just the immediate reward.

In other words, we are trying to map state-action pairs to rewards as represented in

the following Equation 3.1:

f (S t, At) = Rt+1 (3.1)

21

3.3 Q-Function and Q-Values

Q-Function is an indication of the quality of an action taken by the agent given a

certain state. Therefore, it is referred to as the action-value function. The output of

the function for any state-action is known as the Q-value. In Q-Learning, a Q-Table

is built containing the state-action pairs and their corresponding Q-Values. In simple

words, it tells us which actions to take in which states to get the highest reward. In

order to calculate the Q-values, we use an equation called the Bellman equation which

is shown in the following Equation 3.2:

q⇤ (s, a) = E

Rt+1 + �max

a0
q⇤

�
s0, a0

��
(3.2)

The Bellman equation consists of two parts: the immediate reward and the future

Q-Values. This equation can estimate the total reward we can get from some states

onwards if we are going to follow this particular behavior. Simply put, it is used to

optimize behavior by looking one step ahead.

In deep reinforcement learning, which is the approach used in this thesis, we follow

another approach called Deep Q-Learning, in which we use neural networks to work

as a function approximator to obtain the optimal Q-values as shown in Figure 3.2:

22

Figure 3.2 Q-Learning Vs Deep Q-Learning [41]

3.4 Deep Reinforcement Learning Agent

A reinforcement learning agent is the brain where the algorithm resides. The agent’s

purpose is to select the appropriate action given a certain state to maximize the overall

reward. This indicates that it is taking the best action available. Deep Q-learning is

the chosen approach used in this research because using Q-learning to estimate the

Q-values by constructing a Q-table of state-action pairs will be unsuitable given the

large number of observations or states observed by the agent. In other words, we use

neural networks to map states to action-Q-value pairs instead of mapping state-action

pairs to Q-values.

Deep Q-learning uses two separate neural networks: the first one is called the main

network or the policy network, and the second one is called the target network. The

reason for using two separate neural networks is that when we feed a state to the

neural network in order to obtain the appropriate action-Q-value pairs, the weights

of the network are updated. With that constant change, this mapping process will

be impossible because we are chasing a dynamic target that contradicts the whole

purpose of mapping states to action-Q-value pairs. Instead, we use a second neural

network with initially the same weights as those of the main network. The target

23

network is used to obtain the target Q-values as shown in Figure 3.3, and then, the

weights will be updated to match the main network ones every certain number of

iterations to ensure that the learning process is functioning properly [42].

Figure 3.3 Target Q-Values

3.4.1 Exploration Vs Exploitation

For the reinforcement learning agent to take any action, it follows a strategy called

an epsilon greedy strategy because it needs to explore the environment by initially

performing random actions, and later on it decides the best actions required in the

long term. This introduces us to the exploration-exploitation trade-o↵, which is when

the agent goes through the environment, and later, it gets to a point when it does not

require to explore the environment anymore. We start by setting an exploration rate

which is initially ✏ = 1 and will decay by a certain rate at the beginning of each

training loop, or in this context called episode. Then, a random number between ”0”

and ”1” will be produced as a threshold. If that threshold is greater than ✏, the agent

will start exploitation to select its next action [43].

In this thesis, we have two actions between which the agent can choose. The actions

24

are represented by the numerical values “1” and ”0”, which indicate the state of the

observed network tra�c whether being an intrusion or not respectively.

3.4.2 Experience Replay

In deep Q-learning, a new concept called replay memory comes into place, where the

agent’s experience et at time t is composed of the state, action, reward, and next state

as shown in Equation 3.3 and will be stored in a dataset known as replay memory.

et = (st, at, rt+1, st+1) (3.3)

The experience replay concept makes it flexible to sample from less correlated data

and optimally utilize the data. This process helps train the neural network in the most

e�cient way and theoretically produce better results. In machine learning, a group of

samples are known as a batch, and each sample represents an experience. A batch has

a specific fixed sample size which is stated at the beginning of the training process.

This concept can be visualized in Figure 3.4:

Figure 3.4 Experience Replay

25

In Table 3.1 a detailed explanation of the deep Q-learning algorithm is shown.

Table 3.1 Deep Q-learning Algorithm

26

PyTorch open-source machine learning framework [44] was used to implement the re-

inforcement learning agent. Some preprocessing was required for the raw observation

provided by the Gym environment to fit the PyTorch operated deep neural network.

The Gym environment structure and work flow will be discussed in the upcoming

section. The entire operational structure and workflow of the reinforcement learning

agent can be observed below in Figure 3.5:

27

Figure 3.5 Activity Chart of Reinforcement Learning Agent

28

3.5 Gym Environment

The environment is a very important element of the reinforcement learning process.

Building an expressive environment is a necessity for the agent to be properly trained

and perform the assigned task e�ciently. It can also be used to train di↵erent re-

inforcement learning models. In order to implement this environment concept, a

specifically developed toolkit called Gym is used to create reinforcement learning

environments, which is referred to as OpenAI Gym toolkit [45]. A custom-built envi-

ronment was introduced to suit the approach developed in this thesis, which is Deep

Q-Learning. The proposed Gym environment provides network tra�c, and the agent’s

duty is to interact with this environment by selecting an action after being exposed to

di↵erent network tra�cs and deciding whether this network tra�c is an intrusion or

not. In the upcoming sections, we will dive deeper into the structure of the Gym

environment.

3.5.1 Gym Environment Structure

The gym environment structure is based on four di↵erent functions that are all in the

same class: initialization, step, reset, and render. The environment will be referred to

as an object called env.

The initialization function is composed of many parameters. The two most relevant

parameters are the action space, which is the available actions for the agent to take,

and the observation space, which includes network tra�c’s features that will be ob-

served by the agent. The step function will observe the action taken by the agent and

return four di↵erent parameters: next state, reward, done, and info. These parameters

represent the next state that the agent will observe, the current reward, a Boolean value

indicating whether this episode is over or not, and some additional diagnostic infor-

mation. The reset function provides a new random initial state. The render function

outputs a graphical representation of the current situation in the environment. In this

context, however, it is irrelevant because we do not have a graphical representation for

the Gym environment. A code snippet is shown in Figure 3.6 for further explanation.

Moreover, all the possible actions, state labels, and rewards are provided in Table 3.2

29

to deepen the understanding of the previous concepts.

Figure 3.6 Single Episode with 100 Timesteps Provided by G. Brockman et al. [45]

Table 3.2 State, Action and Reward as Represented in the Environment

First, the reset function is used to obtain the initial observation from the environment,

which is then passed to the agent. Second, the agent will choose an action from the

available ones. Third, the action chosen by the agent is passed to the environment

step function. The step function will return the next observation, the reward for the

agent’s past action, a Boolean value indicating whether the training episode is over

or not, and some diagnostic information. This training process continues until it is

terminated. In Figure 3.7, a more realistic code snippet is shown to give a clearer

understanding. The only di↵erence is that the custom-built Gym environment is initi-

ated at the beginning of the code. Table 3.2 explains the reward system given by the

environment in correspondence with the action taken by the agent. When the agent

observes a state provided by the environment, it responds by choosing an action from

the available actions. The agent can either choose ”0” or ”1” which indicates whether

30

this network tra�c is a normal or an intrusion respectively. Given this action, the

environment judges the agent behavior by matching it with the label associated with

each network tra�c in the dataset. Thereupon, the environment assigns either a posi-

tive reward ”1” or a negative reward ”-1” in response to the correct or incorrect action

of the agent respectively.

Figure 3.7 Single Episode with 1 Timestep of Our Intrusion Detection RL Code

3.5.2 NSL-KDD Dataset

The NSL-KDD dataset, which is used by the Gym environment to provide observa-

tions to the agent, was obtained from the website of the Canadian Institute of Cyber

Security, University of New Brunswick [46]. The dataset is a modified version of

the original KDDCUP’99 dataset which was originally introduced in a competition

with the goal of gathering network tra�c data. This dataset is one of the largest and

most researched dataset, and it serves as a benchmark for today’s modern intrusion

detection systems. Its training set contains 125,973 records of which 67,343 repre-

sent normal network tra�c and 58,630 represent intrusions. Its testing set contains

22,544 records of which 9,711 represent normal network tra�c and 12,833 represent

intrusions [47].

The dataset contains four main attack categories (DoS, Probe, U2R, and R2L) and 39

di↵erent subcategories as described in Table 3.3.

31

Table 3.3 Main Attack Types and their Subcategories in NSL-KDD Dataset

Moreover, each record of the dataset represents 41 features of network tra�c and a

label as described in Table 3.4 below.

32

Table 3.4 The Di↵erent 42 Feature in the NSL-KDD Dataset

33

Given the multiple features in the NSL-KDD dataset and the di↵erent categorical val-

ues, it will be infeasible to use this data in its raw form. Therefore, data preprocessing

is performed by using the one-hot encoding approach. This approach is based on

turning the categorical value into a binary value. The first step includes mapping the

categorical values to integer values. Then, a binary value of “1” will be assigned for

each relevant category and a “0” for the irrelevant categories.

For further clarification, an example will be given using the data features introduced

in the previous section. The “Protocol Type” feature has three possible categorical

values: ‘icmp’, ‘tcp’, and ‘udp’. It can be mapped to three di↵erent integer values,

and a binary value “1” will be assigned to the existing protocol in the network tra�c.

Then, a binary value “0” will be assigned to the non-existing protocol as depicted in

Figure 3.8.

Figure 3.8 One Hot Encoding of Protocol Type Feature

To sum up what has been explained in this section, the acquired observation from

the environment is a binary representation of the network tra�c encoded using the

one-hot vector encoding approach.

34

3.6 Deep Learning Baseline Solution Using LSTM

A supervised learning approach such as deep learning using Long Short-Term Mem-

ory neural network is a necessity for improving rule-based intrusion detection sys-

tems. Generally, unsupervised learning approaches are more feasible to implement.

However, due to the enormous amount of features and changes in the network tra�c,

the unsupervised learning approaches are ine↵ective. Therefore, for intrusion detec-

tion supervised learning is a more suitable approach than unsupervised learning.

The Long Short-Term Memory neural network architecture, which was introduced

in [48], is the most suitable one because of its unique architecture that showed success

when dealing with time-series data such as handwriting, speech, and text recognition,

Natural Language Processing (NLP), and weather forecasting as shown in Figure 3.9

[49].

Figure 3.9 LSTM Handling time-series Data [49]

The baseline model implemented was trained on labeled training data using this ar-

chitecture to detect intrusions in network tra�c and was then evaluated using the un-

labeled testing data. The dataset used is the NSL-KDD dataset, which was previously

introduced.

35

3.6.1 LSTM Baseline Solution Data Preprocessing

For the deep learning approach, using the data in its raw form will be impossible be-

cause feeding categorical values to the deep neural network is not applicable. Instead,

we will encode the raw data by using an approach called label encoding. Similar to

the one-hot encoder approach introduced in the previous section, it assigns an integer

numerical value instead of the categorical value. The dataset was processed to label

all attack types as “intrusion”, which are assigned the same integer numerical value

regardless of the attack type. In the encoding process, the intrusion network tra�c

was assigned the value “0” and normal network tra�c was assigned the value “1” as

shown in Figure 3.10.

Figure 3.10 Label Encoding

Since the data has di↵erent integral numerical values range, it should be normalized to

make all the numerical values fit into a common scale without changing the di↵erence

between the values. This normalization process will enhance the training, as no par-

ticular feature in the data regardless of its large numerical value will further influence

the training process. The last preprocessing step required is reshaping the dataset to

the appropriate size and dimension to fit the neural network.

36

3.6.2 LSTM Model Architecture

The unique architecture of the LSTM neural network allows the data to be stored in

a memory called a memory cell for a certain period of time, which is composed of

gates that control three aspects: when data enters the memory (input gate), when it

forgets the data (forget gate), and when it outputs the data (output gate). This can be

seen clearly in Figure 3.11 [50].

Figure 3.11 LSTM Architecture [50]

Xt represents the input, Ct represents the cell state, and ht, known as the state, repre-

sents the output in Equation 3.4 that will be fed alongside the new input to the next

step.

ht = f (ht�1, xt) (3.4)

The input gate has two functions: the sigmoid function and the tanh function. The

sigmoid function makes a binary decision of whether the input values should pass

or not, and the tanh function assigns weights to the successfully passed inputs to

determine their importance. The forget gate has one sigmoid function which decides

37

which of the previous outputs and the current inputs should be kept and which should

be discarded. Similarly, the output gate has the two sigmoid and tanh functions that

perform the same mentioned tasks in the input gate. Then, the output from the tanh

function will be multiplied by the output of the sigmoid function.

The LSTM neural network architecture was implemented using the TensorFlow open-

source machine learning framework [51] alongside Scikit-Learn and Keras.

38

CHAPTER 4

EVALUATION AND RESULTS

In this chapter, the evaluation approach, metric used, and the the results of the exper-

iments conducted using the new approach will be discussed. The experiments were

conducted using di↵erent number of training iterations, various neural network struc-

tures including di↵erent numbers of hidden layers and neurons, and multiple batch

sizes. Additionally, we used 50% of the data in some experiments and 100% in oth-

ers to prove that reinforcement learning can handle attack types and function properly

even when there is an increase in the number of attack types represented in the dataset,

leading to the conclusion that RL can generalize. The baseline LSTM solution’s ex-

periments were conducted using di↵erent neural network structures. The reason for

the variation proposed in the experiments is that obtaining an improvised model is

not an exact formula but rather based on a trial-and-error approach. At the end of the

chapter, a general comparison with other reinforcement learning approaches imple-

menting the NSL-KDD dataset from the literature is discussed in order to demonstrate

the performance comparison with the approach introduced in this thesis.

39

4.1 Experimental Settings

Reinforcement learning experiments were conducted using PyTorch machine learning

framework and OpenAI Gym library. The baseline supervised learning solution’s ex-

periments were conducted using TensorFlow machine learning framework integrated

with Scikit-Learn and Keras.

• Hardware

– GPU: Radeon Pro 555X/4GB/GDDR5

– RAM: 16GB/2400MHz/DDR4

– CPU: Intel Core i7-8750H 2.2GHz x 6

• Software Versions

– OS: macOS Big Sur 11.2

– IDE: Visual Studio Code 1.53.0

– Python: 3.7.4

– PyTorch: 1.6.0

– OpenAI Gym: 0.18.0

– TensorFlow: 2.2.0

– Scikit-learn: 0.23.1

– Keras: 2.4.3

40

4.2 Evaluation Metrics

One of the best evaluation methods used for classification prediction models is con-

fusion matrix metrics including F1 score (Equation 4.1), accuracy (Equation 4.2),

precision (Equation 4.3), and recall (Equation 4.4) [52].

F1 = 2 ⇥

Precision ⇥ Recall
Precision + Recall

!
(4.1)

Recall =

TruePositive
TruePositive + FalseNegative

!
(4.2)

Accuracy =
✓TruePositive + TrueNegative

T P + FN + FP + T N

◆
(4.3)

Precision =
✓ TruePositive
TruePositive + FalsePositive

◆
(4.4)

The confusion matrix [52] shown in Figure 4.1 can be used for classification prob-

lems to show the actual classification (label) and the predicated one. Since all of the

implemented approaches in this research use binary classification, confusion matrix

metrics are considered the optimal option for evaluation. Although using confusion

matrix metrics is not suitable for reinforcement learning model evaluation, we can

utilize the confusion matrix metrics for our reinforcement learning approach since the

data is labeled. The previous four equations were derived from the confusion matrix,

which represents F1 score, precision, recall (sensitivity), and accuracy of the evalu-

ated model in terms of True Positive (TP), False Negative (FN), False Positive (FP),

and True Negative (TN).

41

Figure 4.1 Confusion Matrix [52]

In the context of this research, TP means that the model evaluated the network tra�c

as an intrusion, and it is actually an intrusion. On the other hand, FP means that the

model evaluated the network tra�c as an intrusion, but it is not an intrusion. The TN

that the model evaluated the network tra�c as not an intrusion, and it is truly not an

intrusion. Finally, FN indicates that the model evaluated the network tra�c as not

intrusion, however, it is actually an intrusion.

Each one of the four metrics can answer a question about the model performance. For

example, the precision answers the question of how many of all the network tra�c

evaluated as an intrusion that were actually intrusions. The recall or True Positive

Rate (TPR) answers the questions of how many intrusions were evaluated correctly

and what will be the cost or the consequence if an actual intrusion was not detected.

Higher recall value indicates that the model is evaluating more accurately. The ac-

curacy is the ratio between the correctly predicted intrusions and the total number of

intrusions. F1 shows the overall performance of the model and if the FN and FP pre-

dictions are a↵ecting the model performance. The higher the F1 value, the better the

performance.

42

4.3 Reinforcement Learning Model Evaluation

Reinforcement learning model evaluation di↵ers from other machine learning ap-

proaches in its unique structure. In order to evaluate a reinforcement learning model,

we have two approaches: the performance of the policy estimated by the model and

the learning curve that indicates the improvement of the agent’s actions over time.

The learning curve approach was followed in this thesis. It can be identified as the

accumulative reward as a function of the number of episodes. In other words, we are

plotting the accumulative reward acquired by the RL agent over time and showing if it

is increasing or decreasing. If the accumulative reward is increasing, it indicates that

the RL agent’s actions are improving during the learning process, which is the desired

output.

4.4 Reinforcement Learning Experimental Results

In Figure 4.2 below, the learning curve of the RL agent is plotted. It is showing a

great improvement in the agent’s performance over time, which validates the model.

This means that the accumulative reward that the agent is receiving is increasing over

time. This indicates that the agent’s ability to choose the most appropriate action by

maximizing its gain is improving over time.

43

Figure 4.2 RL Agent Learning Curve

The results of the Deep Q reinforcement learning model are shown below. Although

many experiments were conducted, only the top-performing ones are expressed. The

other experiments were attempts to reach the optimal hyper-parameters. An experi-

ment with only 50% of the dataset is performed to show the generalization property

of RL when compared to the full dataset experiment. Another experiment is shown

using di↵erent hyper-parameters to prove that the RL model’s hyper-parameters and

neural network structure can a↵ect its performance drastically.

44

The first conducted experiment in RL was utilizing the novel reinforcement learning

model developed in this research. We started by using 50% of the data with 400

training iterations, 100 steps per episode, and a batch size of 64. We used one hidden

layer of size 50*10, and the results can be shown in Figure 4.3. The accuracy reached

86.80%.

Figure 4.3 Results of Experiment 1 of Deep Q-Learning RL Model

45

In the second conducted RL experiment, we used 100% of the data with 800 training

iterations, 100 steps per episode, and a batch size of 64. We used one hidden layer

of size 50*10, and the results can be shown in Figure 4.4. The accuracy was about

93.12%.

Figure 4.4 Results of Experiment 2 of Deep Q-Learning RL Model

46

In the third conducted RL experiment, we used 100% of the data with 800 training

iterations, 100 steps per episode, and a batch size of 64. We used two hidden layers

of size 150*10, and the results can be shown in Figure 4.5. The accuracy was about

91.63%. This experiment is shown to prove that RL performance can be a↵ected by

its hyper-parameters and its neural network structure.

Figure 4.5 Results of Experiment 3 of Deep Q-Learning RL Model

47

4.5 LSTM Experimental Results

In this section, the conducted experiments on the LSTM are expressed. The idea

of including the LSTM experimental results is to compare a supervised learning ap-

proach that serves as a baseline with the proposed reinforcement learning approach.

As mentioned earlier, the other experiments were attempts to reach the optimal hyper-

parameters.

In the top-performing experiment conducted on the LSTM solution (baseline), we

used 100% of the data with 30 epochs, four LSTM layers, four Dropouts, and one

dense layer of unit size 2. The results can be shown in Figure 4.6. The accuracy

reached 76.81%.

Figure 4.6 Results of Experiment 1 of LSTM Model

48

4.6 Experimental Results

An aggregation of all the conducted experiments’ results can be shown in Table 4.1 to

give an overview.

Table 4.1 Aggregated Results Comparison

4.7 Performance Comparison With the Baseline Approach

Table 4.2 is an aggregation of the top-performing experimental results, including

the developed RL approach and the implemented LSTM baseline solution. The table

below shows the superiority of the RL approach in every aspect when compared to

the LSTM approach.

49

Table 4.2 Aggregated Results Comparison

4.8 Deep Dive Into the Results

From the results provided by the experiments, we can draw some conclusions. By

comparing Experiment 1-RL and Experiment 2-RL in which we used 50% and 100%

of the dataset respectively, we can see that the accuracy increased slightly. This shows

that RL can generalize when dealing with many intrusion types and forms. Another

conclusion was made by comparing Experiment 2-RL with Experiment 3-RL. We

noticed a drop in the accuracy after changing the hyper-parameters, implying that the

RL model’s performance can be a↵ected by the structure of its neural network and its

hyper-parameters.

By comparing the recall and precision metrics of the Deep Q-Learning model and

LSTM model, we can draw further conclusions. A high recall means that the number

of FN predictions is low and high precision means that the FP rate is low, and vice

versa. In intrusion detection systems, a high FP rate will render the system unrealistic

and will cause unnecessary panic, and if the FN rate is high, a lot of intrusions will

go undetected. A well-balanced system will have a ratio of a low FP rate to a low FN

rate, which means that both precision and recall must be high. By observing the results

of Experiment 2-RL, it is obvious from the recall (95.90%) and precision (96.83%)

metrics that the model has a good balance between the FN rate and the FP rate, and

both are low, which is preferred. However, looking at the results of Experiment 1-

LSTM, the recall (97.3%) and precision (78.3%) have a large gap between them, and

the model has a high FP rate and a low FN rate, which is undesirable in an intrusion

detection system.

50

4.9 Performance Comparison With Others Work

Table 4.3 is an aggregation of the top-performing experimental results of the RL

agent alongside other results collected from related researches in the literature. The re-

lated researches implemented RL approaches such as Adversarial/Multi Agent Rein-

forcement Learning using Deep Q-Learning (AE-DQN) [53], Deep Q-Network (DQN)

[54], Double Deep Q-Network (DDQN) [55], Adversarial Environment Reinforce-

ment Learning (AE-Rl) [56], and Asynchronous Advantage Actor Critic (A3C) [56]

alongside the same NSL-KDD dataset. The table also expresses the value added by

this research in enhancing and improving the reinforcement learning agent’s perfor-

mance in intrusion detection as shown.

51

Table 4.3 Aggregated Results Comparison

52

CHAPTER 5

CONCLUSION

Due to the massive shift to network-based technologies, cloud computing-based ser-

vices are becoming the ultimate replacement and solution for handling and provid-

ing the infrastructure of computer systems, storage space, and computational power

needed by agencies, companies, organizations, institutions, and governments. This

transition introduced major concerns regarding the medium or network systems used

to deliver these services and resources. Securing the network systems poses a chal-

lenge to customers and users of cloud computing services and other network-based

technologies. The new attack types and continuous change in attack patterns in-

troduced frequently pose a threat which make it very di�cult for traditional cyber-

security and intrusion detection systems to keep up with those developments in at-

tacks and the increasing scale of network systems. With those challenges on the rise,

machine learning comes into place by introducing a new way to build cyber-security

and network intrusion detection systems that are flexible, resilient, and more e�cient.

Machine learning can be used as the heart of the network intrusion detection systems

by learning from relevant data, categorizing, and detecting intrusions in network sys-

tems. The use of machine learning can overcome the growing challenges by keeping

up with the continuous change in attack patterns or development of new attacks, which

is aligned with the objective of this thesis.

In this thesis, we provided an answer to the intrusion problem in modern network sys-

tems by introducing and applying a novel reinforcement learning approach and solu-

tion for intrusion detection. We also got an insight into the performance and aspects of

the novel approach and how this approach has performed compared to other solutions.

53

Using deep reinforcement learning, we developed a novel approach for intrusion de-

tection, and this approach had two key parts. The first part was the agent, which

was built using Deep Q-Learning algorithm and a deep neural network. The second

part was the custom-built Gym environment that guided the learning process and pro-

vided network tra�c from the dataset to the reinforcement learning agent. The dataset

used to fuel the learning process was the NSL-KDD dataset, as it is used as a bench-

mark for most modern intrusion detection systems. A supervised learning solution

that uses LSTM was implemented to serve as a baseline. The reinforcement learning

approach was implemented using PyTorch open-source machine learning framework,

and the baseline supervised deep learning solution was implemented using Tensor-

Flow open-source machine learning framework. Several experiments were carried

out using several hyper-parameters and configurations by trial and error to obtain the

optimal results. The experiments performed were reported, classified according to

their configurations, and compared to other relevant researches.

The superiority of the novel approach, which is our main contribution, was validated

and confirmed by comparing its results with the baseline supervised learning solution

and other relevant work from the literature. Additionally, the custom-built environ-

ment, which is the second contribution, contributed to the model’s superiority by hav-

ing expressive and inclusive features of intrusions. The proposed Deep Q-Learning

reinforcement solution achieved the highest performance with an accuracy of 93.1%

and it appears to be the most e�cient solution among those tested and compared. This

high accuracy was achieved as a result of using an expressive Gym environment and

a well-tuned model. The LSTM solution which was used as a baseline performed less

accurately with an accuracy close to 77%. The obtained results show that the LSTM

solution is not su�ciently e↵ective as a modern intrusion detection solution and has a

high FP rate, limitations, and inability to generalize. Another conclusion drawn from

the observation of RL-Experiments 1, 2, and 3 is that reinforcement learning can gen-

eralize detection of the various intrusion types, and its performance can be a↵ected

by changing its hyper-parameters and the structure of its neural network.

To sum up, the results obtained by the proposed RL approach were satisfactory and

promising, showing that it is superior to other approaches. Therefore, the developed

RL solution was accounted as the most suitable for intrusion detection.

54

As future work, an intrusion detection system can be developed by using the RL ap-

proach integrated with the di↵erent cloud computing services as they o↵er humongous

data, metrics, and computing power that can be utilized to make the network system

more secure.

55

REFERENCES

[1] “Cloud Market Share,” Internet: https://www.statista.com/chart/7994/cloud-
market-share/ [Jan. 15, 2021].

[2] “Cloud Infrastructure Market,” Internet: https://www.statista.com/chart/18819/
worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
[Feb. 6, 2021].

[3] J. Armin, B. Thompson, D. Ariu, G. Giacinto, F. Roli, and P. Kijewski, “2020
Cybercrime Economic Costs: No Measure No Solution,” in 2015 10th Inter-
national Conference on Availability, Reliability and Security. IEEE, 2015, pp.
701–710.

[4] “Net Losses: Estimating the Global Cost of Cybercrime,” Internet:
https://www.csis.org/analysis/net-losses-estimating-global-cost-cybercrime
[Jan. 15, 2021].

[5] M. Roesch et al., “Snort: Lightweight intrusion detection for networks.” in Lisa,
vol. 99, no. 1, 1999, pp. 229–238.

[6] I. Sharafaldin, A. Gharib, A. H. Lashkari, and A. A. Ghorbani, “Towards a Reli-
able Intrusion Detection Benchmark Dataset,” Software Networking, vol. 2018,
no. 1, pp. 177–200, 2018.

[7] “The Hidden Costs of Cybercrime,” Internet:
https://www.csis.org/analysis/hidden-costs-cybercrime [Jan. 15, 2021].

[8] Y. Bouzida and F. Cuppens, “Neural networks vs. decision trees for intrusion
detection,” in IEEE/IST Workshop on ”Monitoring, Attack Detection and Miti-
gation (MonAM), vol. 28. Citeseer, 2006, p. 29.

[9] I. Aljamal, A. Tekeoğlu, K. Bekiroglu, and S. Sengupta, “Hybrid Intrusion De-
tection System Using Machine Learning Techniques in Cloud Computing Envi-
ronments,” in 2019 IEEE 17th International Conference on Software Engineer-
ing Research, Management and Applications (SERA). IEEE, 2019, pp. 84–89.

[10] S. Parampottupadam and A.-N. Moldovann, “Cloud-based Real-time Network
Intrusion Detection Using Deep Learning,” in 2018 International Conference on
Cyber Security and Protection of Digital Services (Cyber Security). IEEE, 2018,
pp. 1–8.

[11] E. Hodo, X. Bellekens, A. Hamilton, P.-L. Dubouilh, E. Iorkyase, C. Tach-
tatzis, and R. Atkinson, “Threat analysis of IoT networks using artificial neu-
ral network intrusion detection system,” in 2016 International Symposium on
Networks, Computers and Communications (ISNCC). IEEE, 2016, pp. 1–6.

56

[12] H. Bostani and M. Sheikhan, “Hybrid of anomaly-based and specification-based
IDS for Internet of Things using unsupervised OPF based on MapReduce ap-
proach,” Computer Communications, vol. 98, pp. 52–71, 2017.

[13] M. S. Pervez and D. M. Farid, “Feature selection and intrusion classification in
NSL-KDD cup 99 dataset employing SVMs,” in The 8th International Con-
ference on Software, Knowledge, Information Management and Applications
(SKIMA 2014). IEEE, 2014, pp. 1–6.

[14] M. Sreekesh et al., “A two-tier network based intrusion detection system archi-
tecture using machine learning approach,” in 2016 International Conference on
Electrical, Electronics, and Optimization Techniques (ICEEOT). IEEE, 2016,
pp. 42–47.

[15] S. Mukkamala, G. Janoski, and A. Sung, “Intrusion detection using neural net-
works and support vector machines,” in Proceedings of the 2002 International
Joint Conference on Neural Networks. IJCNN’02 (Cat. No. 02CH37290), vol. 2.
IEEE, 2002, pp. 1702–1707.

[16] C. Sinclair, L. Pierce, and S. Matzner, “An application of machine learning to
network intrusion detection,” in Proceedings 15th Annual Computer Security
Applications Conference (ACSAC’99). IEEE, 1999, pp. 371–377.

[17] W. Lee and S. Stolfo, “Data Mining Approaches for Intrusion Detection,” 1998.

[18] R. Sommer and V. Paxson, “Outside the Closed World: On Using Machine
Learning for Network Intrusion Detection,” in 2010 IEEE Symposium on Se-
curity and Privacy. IEEE, 2010, pp. 305–316.

[19] S. Zanero and S. M. Savaresi, “Unsupervised Learning Techniques for an Intru-
sion Detection System,” in Proceedings of the 2004 ACM Symposium on Applied
Computing, 2004, pp. 412–419.

[20] W.-H. Chen, S.-H. Hsu, and H.-P. Shen, “Application of SVM and ANN for
intrusion detection,” Computers Operations Research, vol. 32, no. 10, pp.
2617–2634, 2005.

[21] S. L. Scott, “A Bayesian paradigm for designing intrusion detection systems,”
Computational statistics data analysis, vol. 45, no. 1, pp. 69–83, 2004.

[22] Y. Li and L. Guo, “An active learning based TCM-KNN algorithm for supervised
network intrusion detection,” Computers Security, vol. 26, no. 7-8, pp. 459–467,
2007.

[23] C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, and W.-Y. Lin, “Intrusion detection by machine
learning: A review,” Expert Systems with Applications, vol. 36, no. 10, pp. 11
994–12 000, 2009.

[24] K. Sethi, R. Kumar, N. Prajapati, and P. Bera, “Deep Reinforcement Learn-
ing based Intrusion Detection System for Cloud Infrastructure,” in 2020 Inter-
national Conference on COMmunication Systems NETworkS (COMSNETS).
IEEE, 2020, pp. 1–6.

57

[25] C. Liang, B. Shanmugam, S. Azam, M. Jonkman, F. De Boer, and G.
Narayansamy, “Intrusion Detection System for Internet of Things based on a
Machine Learning approach,” in 2019 International Conference on Vision To-
wards Emerging Trends in Communication and Networking (ViTECoN). IEEE,
2019, pp. 1–6.

[26] A. A. Diro and N. Chilamkurti, “Distributed attack detection scheme using deep
learning approach for Internet of Things,” Future Generation Computer Systems,
vol. 82, pp. 761–768, 2018.

[27] M. Du, F. Li, G. Zheng, and V. Srikumar, “DeepLog: Anomaly Detection and
Diagnosis from System Logs through Deep Learning,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 1285–1298.

[28] H. Sagha, S. B. Shouraki, H. Khasteh, and M. Dehghani, “Real-Time IDS Using
Reinforcement Learning,” in 2008 Second International Symposium on Intelli-
gent Information Technology Application, vol. 2. IEEE, 2008, pp. 593–597.

[29] S. Xia, M. Qiu, and H. Jiang, “An adversarial reinforcement learning based sys-
tem for cyber security,” in 2019 IEEE International Conference on Smart Cloud
(SmartCloud). IEEE, 2019, pp. 227–230.

[30] H. Koduvely, “Anomaly Detection through Reinforcement Learning,” presented
at Ottawa Artificial Intelligence and Machine Learning MeetUp group, Ottawa,
ON, Canada, Jan. 29, 2018.

[31] T.-T.-H. Le, Y. Kim, and H. Kim, “Network Intrusion Detection Based on Novel
Feature Selection Model and Various Recurrent Neural Networks,” Applied Sci-
ences, vol. 9, no. 7, p. 1392, 2019.

[32] M. Lopez-Martin, B. Carro, and A. Sanchez-Esguevillas, “Application of deep
reinforcement learning to intrusion detection for supervised problems,” Expert
Systems with Applications, vol. 141, p. 112963, 2020.

[33] C. Tang, N. Luktarhan, and Y. Zhao, “An E�cient Intrusion Detection Method
Based on LightGBM and Autoencoder,” Symmetry, vol. 12, no. 9, p. 1458, 2020.

[34] A. Jeerige, D. Bein, and A. Verma, “Comparison of Deep Reinforcement Learn-
ing Approaches for Intelligent Game Playing,” in 2019 IEEE 9th Annual Com-
puting and Communication Workshop and Conference (CCWC). IEEE, 2019,
pp. 0366–0371.

[35] G. Paragliola, A. Coronato, M. Naeem, and G. De Pietro, “A Reinforcement
Learning-Based Approach for the Risk Management of e-Health Environments:
A Case Study,” in 2018 14th International Conference on Signal-Image Tech-
nology Internet-Based Systems (SITIS). IEEE, 2018, pp. 711–716.

[36] K. Naderi, A. Babadi, S. Roohi, and P. Hämäläinen, “A Reinforcement Learning
Approach To Synthesizing Climbing Movements,” in 2019 IEEE Conference on
Games (CoG). IEEE, 2019, pp. 1–7.

58

[37] Y. Zhang, P. Sun, Y. Yin, L. Lin, and X. Wang, “Human-like Autonomous Vehi-
cle Speed Control by Deep Reinforcement Learning with Double Q-Learning,”
in 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018, pp. 1251–1256.

[38] D. F. Hougen and S. N. H. Shah, “The Evolution of Reinforcement Learning *,”
in 2019 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE,
2019, pp. 1457–1464.

[39] W. Qiang and Z. Zhongli, “Reinforcement learning model, algorithms and its
application,” in 2011 International Conference on Mechatronic Science, Electric
Engineering and Computer (MEC). IEEE, 2011, pp. 1143–1146.

[40] “5 Things You Need to Know about Reinforcement Learning,” In-
ternet: https://www.kdnuggets.com/2018/03/5-things-reinforcement- learn-
ing.html [Feb. 2, 2021].

[41] “Reinforcement learning Deep-Q Networks.” Internet:
https://blogs.oracle.com/datascience/reinforcement-learning-deep-q-networks
[Feb. 2, 2021].

[42] “A Hands-On Introduction to Deep Q-Learning using OpenAI Gym in Python,”
Internet: https://medium.com/analytics-vidhya/a-hands-on-introduction-to-
deep-q-learning-using-openai-gym-in-python- b15d7d8597d [Feb. 2, 2021].

[43] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT
press, 2018.

[44] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library,” arXiv preprint arXiv:1912.01703, 2019.

[45] G. Brockman et al, “OpenAI Gym,” arXiv preprint arXiv:1606.01540, 2016.

[46] “NSL-KDD dataset,” Internet: https://www.unb.ca/cic/datasets/nsl.html [Nov. 2,
2020].

[47] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the
KDD CUP 99 data set,” in 2009 IEEE Symposium on Computational Intelligence
for Security and Defense Applications. IEEE, 2009, pp. 1–6.

[48] S. Hochreiter and J. Schmidhuber, “Long Short-term Memory,” Neural Compu-
tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[49] H. Zhou, Y. Zhang, L. Yang, Q. Liu, K. Yan, and Y. Du, “Short-Term Photo-
voltaic Power Forecasting Based on Long Short Term Memory Neural Network
and Attention Mechanism,” IEEE Access, vol. 7, pp. 78 063– 78 074, 2019.

[50] H. Fan, M. Jiang, L. Xu, H. Zhu, J. Cheng, and J. Jiang, “Comparison of Long
Short Term Memory Networks and the Hydrological Model in Runo↵ Simula-
tion,” Water, vol. 12, no. 1, p. 175, 2020.

[51] M. Abadi et al., “TensorFlow: A system for large-scale machine learning,” in
12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16), 2016, pp. 265–283.

59

[52] M. Vihinen, “How to evaluate performance of prediction methods? Measures
and their interpretation in variation e↵ect analysis,” in BMC Genomics, vol. 13,
no. 4. BioMed Central, 2012, pp. 1–10.

[53] E. Suwannalai and C. Polprasert, “Network Intrusion Detection Systems Using
Adversarial Reinforcement Learning with Deep Q-network,” in 2020 18th In-
ternational Conference on ICT and Knowledge Engineering (ICT&KE). IEEE,
2020, pp. 1–7.

[54] Y.-F. Hsu and M. Matsuoka, ”A Deep Reinforcement Learning Approach for
Anomaly Network Intrusion Detection System,” 2020 IEEE 9th International
Conference on Cloud Networking (CloudNet), Piscataway, NJ, USA, 2020, pp.
1-6.

[55] X. Ma and W. Shi, “AESMOTE: Adversarial Reinforcement Learning with
SMOTE for Anomaly Detection,” IEEE Transactions on Network Science and
Engineering, 2020.

[56] G. Caminero, M. Lopez-Martin, and B. Carro, “Adversarial environment rein-
forcement learning algorithm for intrusion detection,” Computer Networks, vol.
159, pp. 96–109, 2019.

60

