Search Results

Now showing 1 - 2 of 2
  • Master Thesis
    Modülasyon Türlerinin Hiyerarşik Sınıflandırılmasının Performans Analizi
    (2020) Yalçınkaya, Bengisu; Kara, Ali
    Otomatik modülasyon sınıflandırması (AMC), bilinmeyen bir modülasyon tipine sahip gelen modüle edilmiş bir sinyalin modülasyon tipini belirlemek için sıklıkla ihtiyaç duyulan bir yapıdır. AMC uygulamaları literatürde olabilirlik tabanlı (LB) ve özellik tabanlı (FB) yöntemler olarak iki ana başlık altında bölünmüştür. Bu tezde, FB yaklaşımı ile bir AMC algoritması geliştirilmiştir. Sınıflandırıcı olarak lineer, kuadratik ve kübik çekirdek kullanan Destek Vektör Makinesi (SVM) seçilmiş ve performansları karşılaştırılmıştır. SNR değerleri 0 ila 30 dB arasında olan havadan toplanan modüle edilmiş sinyaller kullanılmıştır. Sinyaller, yüksek derecelere kadar M-ASK, M-PSK, M-APSK içeren 12 farklı dijital modülasyon tipiyle modüle edilmiştir. İstatistiksel özellikler, yani sinyalin anlık genliği, fazı ve frekansının ortalaması, varyansı, çarpıklığı ve basıklığı, 8. dereceye kadar olan daha yüksek dereceli momentlere ve kümülanlara ek olarak kullanılmıştır. Sınıflandırıcılar arasından ikinci dereceden çekirdek kullanan SVM daha yüksek performans göstermiştir. Ayrıca, özellikle tek bir sınıflandırıcı kullanılarak sınıflandırıldığında çok düşük performans gösteren yüksek dereceli modülasyon tiplerinde, performansı arttırmak için literatüre kıyasla daha az karmaşıklığa sahip bir hiyerarşik sınıflandırma yapısı önerilmiştir. Bu modülasyonların doğruluklarında geleneksel yönteme kıyasla önemli bir gelişme gözlenmektedir. Genel performans %80'den %90'a yükselmiştir.
  • Doctoral Thesis
    Ticari Radar Platformlarıyla Tahribatsız Muayene için Sar Görüntüleme
    (2024) Yalçınkaya, Bengisu; Aydın, Elif; Kara, Ali
    Ticari olarak temin edilebilen frekans modülasyonlu sürekli dalga (FMSD) milimetre dalga (mmDalga) radarları, mmDalga teknolojisindeki son gelişmelerle beraber radar görüntüleme uygulamalarında giderek daha popüler hale gelmiştir. mmDalga sensörlerinin derin penetrasyon ve yüksek çözünürlük yetenekleri sayesinde, mmDalga sensörlerini benimseyen sentetik açıklıklı radar (SAR) görüntüleme uygulamaları, tahribatsız muayenede (TM) kusur tespiti için büyük bir vaat taşımaktadır. Bununla birlikte, yüksek çözünürlüklü görüntüleme elde etmek için önerilen algoritmik, yapısal ve deneysel çözümler genellikle yüksek maliyet ve karmaşıklık sorunlarıyla sonuçlanmaktadır. Dahası, verimli işleme açısından optimize edilmiş sistem parametreleriyle düşük yansıtıcı malzemelerdeki asgari kusurları tespit etmek ve kusurlu nesnelerin otomatik tespiti yeterince ele alınmamaktadır. Bu tez, SAR görüntülerinden derin öğrenmeye dayalı otomatik kusur tespiti uygulamasını ve TM uygulamalarında kullanım için özel olarak optimize edilmiş sistem parametrelerine sahip yüksek çözünürlüklü ve uygun maliyetli iki boyutlu (2B) mmDalga SAR görüntüleme sistemini tanıtmaktadır. 77 ile 81 GHz arasında çalışan ticari olarak satılan (TOS) bir FMSD radar sensörüyle entegre edilmiş iki eksenli otonom bir tarayıcı inşa etmekteyiz. Deneysel ölçümler, radar sensörünün tek bir alıcı-verici çiftini kullanan bir laboratuvar ortamında gerçekleştirilmektedir. FMSD radar sinyal özellikleri, mekansal örnekleme aralıkları ve tarama açıklıkları dahil olmak üzere yeniden oluşturulan görüntü kalitesini etkileyen sistem parametreleri, yüksek çözünürlük ve düşük hesaplama karmaşıklığı elde etmek için optimize edilmiştir. Düşük yansıtıcı ve hasarlı olanlar dahil olmak üzere farklı tür ve boyutlardaki nesnelerin SAR görüntüleri elde edilmiş ve sistem parametrelerinin görüntü kalitesi üzerindeki etkisi araştırılmıştır. Hedef malzemenin bileşiminin SAR görüntüleme üzerindeki etkisiyle birlikte, hedefte görsel olarak tespit edilemeyen kusurların SAR görüntüleme yoluyla tespit edilebilme potansiyeli irdelenmiştir. Ayrıca, derin öğrenme uygulamaları aracılığıyla arızalı nesnelerin otomatik tespiti için eşleştirilmiş filtre tabanlı bir SAR görüntü veri kümesi oluşturma yöntemi önerilmiştir. Bu sayede gerçek SAR ölçümlerinden elde edilen geniş ve çeşitli SAR görüntüleri içeren bir veri seti oluşturulmuş ve derin öğrenme şemalarının TM uygulamalarına uyarlanması sağlanmıştır. Bulgular, önerilen sistemin düşük maliyetli, yüksek çözünürlüklü 2B SAR görüntüleme için ve düşük radar yansıtıcılığına sahip minyatür malzemelerdeki minimal kusurların tespiti için önemini göstermektedir.