Hierarchical Classification of Analog and Digital Modulation Schemes Using Higher-Order Statistics and Support Vector Machines

dc.authoridYalcinkaya, Bengisu/0000-0003-3644-0692
dc.authorscopusid57736344000
dc.authorscopusid57219359056
dc.authorscopusid7102824862
dc.authorscopusid6506642154
dc.authorwosidYalcinkaya, Bengisu/ABD-4291-2020
dc.contributor.authorYalcinkaya, Bengisu
dc.contributor.authorCoruk, Remziye Busra
dc.contributor.authorKara, Ali
dc.contributor.authorTora, Hakan
dc.contributor.otherElectrical-Electronics Engineering
dc.contributor.otherAirframe and Powerplant Maintenance
dc.contributor.otherDepartment of Electrical & Electronics Engineering
dc.date.accessioned2024-09-10T21:32:58Z
dc.date.available2024-09-10T21:32:58Z
dc.date.issued2024
dc.departmentAtılım Universityen_US
dc.department-temp[Yalcinkaya, Bengisu; Coruk, Remziye Busra; Tora, Hakan] Atilim Univ, Elect & Elect Engn, TR-06830 Ankara, Turkiye; [Kara, Ali] Gazi Univ, Elect & Elect Engn, TR-06570 Ankara, Turkiyeen_US
dc.descriptionYalcinkaya, Bengisu/0000-0003-3644-0692en_US
dc.description.abstractAutomatic modulation classification (AMC) algorithms are crucial for various military and commercial applications. There have been numerous AMC algorithms reported in the literature, most of which focus on synthetic signals with a limited number of modulation types having distinctive constellations. The efficient classification of high-order modulation schemes under real propagation effects using models with low complexity still remains difficult. In this paper, employing quadratic SVM, a feature-based hierarchical classification method is proposed to accurately classify especially higher-order modulation schemes and its performance is investigated using over the air (OTA) collected data. Statistical features, higher-order moments, and higher-order cumulants are utilized as features. Then, the performances of some well-known classifiers are evaluated, and the classifier presenting the best performance is employed in the proposed hierarchical classification model. An OTA dataset containing 17 analog and digital modulation schemes is used to assess the performance of the proposed classification model. With the proposed hierarchical classification algorithm, a significant improvement has been achieved, especially in higher-order modulation schemes. The overall accuracy with the proposed hierarchical structure is 96% after 5 dB signal-to-noise ratio value, approximately a 10% increase is achieved compared to the traditional classification algorithm.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation0
dc.identifier.doi10.1007/s11277-024-11285-y
dc.identifier.endpage847en_US
dc.identifier.issn0929-6212
dc.identifier.issn1572-834X
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85196805371
dc.identifier.scopusqualityQ2
dc.identifier.startpage827en_US
dc.identifier.urihttps://doi.org/10.1007/s11277-024-11285-y
dc.identifier.urihttps://hdl.handle.net/20.500.14411/7281
dc.identifier.volume136en_US
dc.identifier.wosWOS:001254317200009
dc.identifier.wosqualityQ3
dc.institutionauthorGökdoğan, Bengisu Yalçınkaya
dc.institutionauthorÇoruk, Remziye Büşra
dc.institutionauthorKara, Ali
dc.institutionauthorTora, Hakan
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHierarchical modulation classificationen_US
dc.subjectFeature extractionen_US
dc.subjectMachine learning algorithmsen_US
dc.subjectSupport vector machineen_US
dc.subjectAnalog modulationsen_US
dc.subjectDigital modulationsen_US
dc.titleHierarchical Classification of Analog and Digital Modulation Schemes Using Higher-Order Statistics and Support Vector Machinesen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication51b235b3-681b-44c7-89a8-f385d0faf933
relation.isAuthorOfPublicationbc2ed12f-c409-47e7-adb9-96c8e81aad46
relation.isAuthorOfPublicationbe728837-c599-49c1-8e8d-81b90219bb15
relation.isAuthorOfPublication3b369df4-6f40-4e7f-9021-94de8b562a0d
relation.isAuthorOfPublication.latestForDiscovery51b235b3-681b-44c7-89a8-f385d0faf933
relation.isOrgUnitOfPublication032f8aca-54a7-476c-b399-6f26feb20a7d
relation.isOrgUnitOfPublication0ad0b148-c2aa-44e7-8f0a-53ab5c8406d5
relation.isOrgUnitOfPublicationc3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscovery032f8aca-54a7-476c-b399-6f26feb20a7d

Files

Collections