Hierarchical Classification of Analog and Digital Modulation Schemes Using Higher-Order Statistics and Support Vector Machines

dc.contributor.author Yalcinkaya, Bengisu
dc.contributor.author Coruk, Remziye Busra
dc.contributor.author Kara, Ali
dc.contributor.author Tora, Hakan
dc.contributor.other Electrical-Electronics Engineering
dc.contributor.other Airframe and Powerplant Maintenance
dc.contributor.other Department of Electrical & Electronics Engineering
dc.date.accessioned 2024-09-10T21:32:58Z
dc.date.available 2024-09-10T21:32:58Z
dc.date.issued 2024
dc.description Yalcinkaya, Bengisu/0000-0003-3644-0692 en_US
dc.description.abstract Automatic modulation classification (AMC) algorithms are crucial for various military and commercial applications. There have been numerous AMC algorithms reported in the literature, most of which focus on synthetic signals with a limited number of modulation types having distinctive constellations. The efficient classification of high-order modulation schemes under real propagation effects using models with low complexity still remains difficult. In this paper, employing quadratic SVM, a feature-based hierarchical classification method is proposed to accurately classify especially higher-order modulation schemes and its performance is investigated using over the air (OTA) collected data. Statistical features, higher-order moments, and higher-order cumulants are utilized as features. Then, the performances of some well-known classifiers are evaluated, and the classifier presenting the best performance is employed in the proposed hierarchical classification model. An OTA dataset containing 17 analog and digital modulation schemes is used to assess the performance of the proposed classification model. With the proposed hierarchical classification algorithm, a significant improvement has been achieved, especially in higher-order modulation schemes. The overall accuracy with the proposed hierarchical structure is 96% after 5 dB signal-to-noise ratio value, approximately a 10% increase is achieved compared to the traditional classification algorithm. en_US
dc.identifier.doi 10.1007/s11277-024-11285-y
dc.identifier.issn 0929-6212
dc.identifier.issn 1572-834X
dc.identifier.scopus 2-s2.0-85196805371
dc.identifier.uri https://doi.org/10.1007/s11277-024-11285-y
dc.identifier.uri https://hdl.handle.net/20.500.14411/7281
dc.language.iso en en_US
dc.publisher Springer en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Hierarchical modulation classification en_US
dc.subject Feature extraction en_US
dc.subject Machine learning algorithms en_US
dc.subject Support vector machine en_US
dc.subject Analog modulations en_US
dc.subject Digital modulations en_US
dc.title Hierarchical Classification of Analog and Digital Modulation Schemes Using Higher-Order Statistics and Support Vector Machines en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Yalcinkaya, Bengisu/0000-0003-3644-0692
gdc.author.institutional Gökdoğan, Bengisu Yalçınkaya
gdc.author.institutional Çoruk, Remziye Büşra
gdc.author.institutional Kara, Ali
gdc.author.institutional Tora, Hakan
gdc.author.scopusid 57736344000
gdc.author.scopusid 57219359056
gdc.author.scopusid 7102824862
gdc.author.scopusid 6506642154
gdc.author.wosid Yalcinkaya, Bengisu/ABD-4291-2020
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Yalcinkaya, Bengisu; Coruk, Remziye Busra; Tora, Hakan] Atilim Univ, Elect & Elect Engn, TR-06830 Ankara, Turkiye; [Kara, Ali] Gazi Univ, Elect & Elect Engn, TR-06570 Ankara, Turkiye en_US
gdc.description.endpage 847 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 827 en_US
gdc.description.volume 136 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.wos WOS:001254317200009
gdc.scopus.citedcount 4
gdc.wos.citedcount 3
relation.isAuthorOfPublication 51b235b3-681b-44c7-89a8-f385d0faf933
relation.isAuthorOfPublication bc2ed12f-c409-47e7-adb9-96c8e81aad46
relation.isAuthorOfPublication be728837-c599-49c1-8e8d-81b90219bb15
relation.isAuthorOfPublication 3b369df4-6f40-4e7f-9021-94de8b562a0d
relation.isAuthorOfPublication.latestForDiscovery 51b235b3-681b-44c7-89a8-f385d0faf933
relation.isOrgUnitOfPublication 032f8aca-54a7-476c-b399-6f26feb20a7d
relation.isOrgUnitOfPublication 0ad0b148-c2aa-44e7-8f0a-53ab5c8406d5
relation.isOrgUnitOfPublication c3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscovery 032f8aca-54a7-476c-b399-6f26feb20a7d

Files

Collections