Plasmon Interactions at the (ag, Al)/Inse Thin-Film Interfaces Designed for Dual Terahertz/Gigahertz Applications

No Thumbnail Available

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Events

Abstract

In this article, we investigate the plasmon-dielectric spectral interaction in the Ag/InSe and Al/InSe thin-film interfaces. The mechanism is explored by means of optical absorbance and reflectance at terahertz frequencies and by the impedance spectroscopy at gigahertz frequencies. It was observed that the interfacing of the InSe with Ag and Al metals with a film thickness of 250 nm causes an energy band gap shift that suits the production of thin-film optoelectronic devices. The reflectance and dielectric constant and optical conductivity spectral analysis of these devices displayed the properties of wireless band stop filters at 390 THz. The physical parameters which are computed from the conductivity spectra revealed higher mobility of charge carriers at the Al/InSe interface over that of Ag/InSe. The respective electron-bounded plasmon frequencies are found to be 2.61 and 2.13 GHz. On the other hand, the impedance spectral analysis displayed a microwave resonator feature with series resonance peak position at 1.68 GHz for the Al/InSe/Ag interface. In addition, the temperature-dependent impedance spectra, which were recorded in the temperature range of 300-420 K, revealed no significant effect of temperature on the wave trapping properties of the Al/InSe/Ag interface. The sensitivity of the interfaces to terahertz and gigahertz frequencies nominates it as laser light/microwave traps, which are used in fibers and communications.

Description

Qasrawi, Atef Fayez/0000-0001-8193-6975; Al Garni, Sabah/0000-0002-4995-8231

Keywords

Plasmon, InSe, Wave trap, Terahertz, Gigahertz

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q3

Scopus Q

Q2

Source

Volume

12

Issue

2

Start Page

515

End Page

521

Collections