Multi-Symplectic Integration of Coupled Non-Linear Schrödinger System With Soliton Solutions

dc.contributor.author Aydın, Ayhan
dc.contributor.author Aydın, Ayhan
dc.contributor.author Karasözen, Bülent
dc.contributor.author Aydın, Ayhan
dc.contributor.other Mathematics
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-08T12:53:23Z
dc.date.available 2024-07-08T12:53:23Z
dc.date.issued 2009
dc.date.issuedtemp 2009-04-23
dc.description.abstract Systems of coupled non-linear Schrödinger equations with soliton solutions are integrated using the six-point scheme which is equivalent to the multi-symplectic Preissman scheme. The numerical dispersion relations are studied for the linearized equation. Numerical results for elastic and inelastic soliton collisions are presented. Numerical experiments confirm the excellent conservation of energy, momentum and norm in long-term computations and their relations to the qualitative behaviour of the soliton solutions.
dc.identifier.uri https://hdl.handle.net/20.500.14411/6473
dc.institutionauthor Aydın, Ayhan
dc.language.iso en
dc.publisher International Journal of Computer Mathematics
dc.subject mathematics
dc.title Multi-Symplectic Integration of Coupled Non-Linear Schrödinger System With Soliton Solutions
dc.type Article
dspace.entity.type Publication
relation.isAuthorOfPublication 51e6d006-8fef-4668-ab1b-0e945155d8ae
relation.isAuthorOfPublication 51e6d006-8fef-4668-ab1b-0e945155d8ae
relation.isAuthorOfPublication 51e6d006-8fef-4668-ab1b-0e945155d8ae
relation.isAuthorOfPublication.latestForDiscovery 51e6d006-8fef-4668-ab1b-0e945155d8ae
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections