Computational analysis of TiC3 as a high-efficiency anode for calcium-ion batteries
Loading...
Date
2024
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
A comprehensive analysis of the structural, electronic, and thermal properties of TiC3 has been conducted. The calculated thermal expansion coefficient throughout a significant portion of the temperature range leads to a negative value underscoring the material's significance. The carbon-rich polytype of titanium carbide (TiC3) is being proposed for the first time as an anode material for calcium-ion batteries (CIB). The adsorption of Ca2+ ions has been determined to be favorable, with high accommodation of guest atoms and sufficiently rapid ionic mobility. The total volume expansion for a maximum Ca2+ adsorbed TiC3 configuration is calculated to be 8.2 %, which is lower compared to other anode materials for CIBs. Through the calciation of TiC3 up to the highest Ca2+ concentration (Ca7TiC3), an exceptionally high theoretical capacity of 2236 mAh/g has been achieved. Regarding battery rate capability, the lowest diffusion barrier calculated is 0.13 eV, with a remarkably high diffusion coefficient along the corresponding pathway equal to 10-3 cm2/s, indicating the ease of Ca ion movement within the host material. Furthermore, the equilibrium distance (2.5 & Aring;) between our host and guest atoms indicates a robust interaction between them. These findings lay the groundwork for the development of high-performance anode materials for CIBs.
Description
Keywords
Calcium-ion batteries, DFT, Anode, Theoretical capacity, Volume expansion
Turkish CoHE Thesis Center URL
Fields of Science
Citation
0
WoS Q
Q1
Scopus Q
Q1
Source
Volume
98