Conservative finite difference schemes for the chiral nonlinear Schrödinger equation

dc.contributor.authorIsmaıl, Mohammed S.
dc.contributor.authorAl-basyounı, Khalil S.
dc.contributor.authorAydın, Ayhan
dc.contributor.otherMathematics
dc.date.accessioned2024-07-08T12:53:13Z
dc.date.available2024-07-08T12:53:13Z
dc.date.issued2015
dc.date.issuedtemp2015-08-08
dc.description.abstractIn this paper, we derive three finite difference schemes for the chiral nonlinear Schrödinger equation (CNLS). The CNLS equation has two kinds of progressive wave solutions: bright and dark soliton. The proposed methods are implicit, unconditionally stable and of second order in space and time directions. The exact solutions and the conserved quantities are used to assess the efficiency of these methods. Numerical simulations of single bright and dark solitons are given. The interactions of two bright solitons are also displayed.
dc.identifier.urihttps://hdl.handle.net/20.500.14411/6397
dc.institutionauthorAydın, Ayhan
dc.language.isoen
dc.publisherBoundary Value Problems
dc.subjectmathematics
dc.titleConservative finite difference schemes for the chiral nonlinear Schrödinger equation
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication51e6d006-8fef-4668-ab1b-0e945155d8ae
relation.isAuthorOfPublication.latestForDiscovery51e6d006-8fef-4668-ab1b-0e945155d8ae
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files