Simultaneous novel synthesis of conducting and non-conducting halogenated polymers by electroinitiation of (2,4,6-trichloro- or 2,6-dichlorophenolato)Ni(II) complexes

No Thumbnail Available

Date

2005

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Sci Ltd

Research Projects

Organizational Units

Organizational Unit
Chemical Engineering
(2010)
Established in 2010, and aiming to train the students with the capacity to meet the demands of the 21st Century, the Chemical Engineering Department provides a sound chemistry background through intense coursework and laboratory practices, along with fundamental courses such as Physics and Mathematics within the freshman and sophomore years, following preparatory English courses.In the final two years of the program, engineering courses are offered with laboratory practice and state-of-the-art simulation programs, combining theory with practice.

Journal Issue

Abstract

NiL2(Ph)(2)(.)xH(2)O [L=3,5-dimethylpyrazole or N-methyl imidazole; Ph=DCP or TCP; x=0, 1 or 3] complexes were synthesised and characterised by analytical and spectroscopic methods using elemental analysis and FTIR. The electrochemical behavior of the complexes was studied by cyclic voltammetry in tetrabutylammoniumtetrafluoroborate-N,N-dimethylformamide electrolyte-sol vent couple. Cyclic voltammogram of the complexes displayed two-step oxidation processes under the nitrogen gas atmosphere. The polymerization of the complexes was accomplished in the same solvent-electrolyte couple by the constant potential electrolysis of NiL2(Ph)(2)(.)xH(2)O, synthesizing the poly(di- or monochlorophenylene oxide)s via free radical mechanism. The simultaneous polymerization of non-conducting polymer and conducting polymer (the conductivity of 0.7 S cm(-2)) were achieved by electroinitiated polymerization of Ni(DMPz)(2)(TCP)(2). The structural analysis of the polymers were performed using FTIR, H-1 NMR and C-13 NMR spectroscopic techniques and DSC for the thermal analysis. The kinetics of the polymerization was followed by in situ UV-vis spectrophotometer during the electrolysis. The low temperature ESR spectrum of the electrolysis solution also confirmed the formation of phenol radical (g=2.0028). One electron oxidation process of NiL2(DCP)(2)(.)xH(2)O produces a new Ni(II) complex, Ni(L-L)(DCP)(2)(S) by the rapid decomposition of (NiL2)-L-III(DCP)(2) into a ligand radical producing a singlet with the g value of 2.0015. Second electron oxidation process generates oligemers, which could not be isolated from the electrolyte solution. (c) 2005 Elsevier Ltd. All rights reserved.

Description

Ozalp Yaman, Seniz/0000-0002-4166-0529

Keywords

poly(di- and monochlorophenylene oxide), conducting polymer, electroinitiated polymerization

Turkish CoHE Thesis Center URL

Citation

4

WoS Q

Q1

Scopus Q

Source

Volume

46

Issue

18

Start Page

6786

End Page

6796

Collections