Physico-chemical characterization and in vitro biological study of manganese doped β-tricalcium phosphate-based ceramics for bone regeneration applications

Research Projects

Organizational Units

Organizational Unit
Metallurgical and Materials Engineering
(2004)
The main fields of operation for Metallurgical and Materials Engineering are production of engineering materials, defining and improving their features, as well as developing new materials to meet the expectations at every aspect of life and the users from these aspects. Founded in 2004 and graduated its 10th-semester alumni in 2018, our Department also obtained MÜDEK accreditation in the latter year. Offering the opportunity to hold an internationally valid diploma through the accreditation in question, our Department has highly qualified and experienced Academic Staff. Many of the courses offered at our Department are supported with various practice sessions, and internship studies in summer. This way, we help our students become better-equipped engineers for their future professional lives. With the Cooperative Education curriculum that entered into effect in 2019, students may volunteer to work at contracted companies for a period of six months with no extensions to their period of study.

Journal Issue

Abstract

This work evaluates the effects of manganese (Mn) doping on the morpho-structural features, mechanical performance, and in vitro biological response of beta-tricalcium phosphate (beta-TCP) derived bioceramics for bone tissue engineering applications. Five different Mn doping levels (i.e., 0.01%, 0.05%, 0.1%, 0.5%, and 1 wt.%) were investigated, with the beta-TCP-based bioceramics being sintered at four temperatures (i.e., 1000, 1100, 1200, and 1300 degrees C). A densification improvement was induced when using Mn in excess of 0.05 wt.%; the densification remained stationary in the sintering temperature range of 1200 - 1300 degrees C. The structural analyses evidenced that all samples sintered at 1000 and 1100 degrees C were composed of beta-TCP as major phase and hydroxyapatite (HA) as a minor constituent (similar to 4-6 wt.%). At the higher temperatures (1200 and 1300 degrees C), the formation of alpha-TCP was signalled at the expense of both beta-TCP and HA. The Mn doping was evidenced by lattice parameters changes. The evolution of the phase weights is linked to a complex inter-play between the capacity of the compounds to incorporate Mn and the thermal decomposition kinetics. The Mn doping induced a reduction in the mechanical performance (in terms of compressive strength, Vickers hardness and elastic modulus) of the beta-TCP-based ceramics. The metabolic activity and viability of osteoblastic cells (MC3T3-E1) for the ceramics were studied in both powder and compacted pellet form. Ceramics with Mn doping levels lower than 0.1 wt.% yielded a more favorable microenvironment for the osteoblast cells with respect to the undoped beta-TCP. No cytotoxic effects were recorded up to 21 days. The Mn-doped beta-TCPs showed a significant increase (p < 0.01) in alkaline phosphatase activity with respect to pure beta-TCP.

Description

Stan, George E./0000-0003-0289-8988; Gunduz, Oguzhan/0000-0002-9427-7574;

Keywords

Manganese doping, beta-tricalcium phosphate, Physical-chemical properties, Rietveld XRD analysis, Cytocompatibility

Turkish CoHE Thesis Center URL

Citation

1

WoS Q

Q2

Scopus Q

Q2

Source

Volume

59

Issue

4

Start Page

969

End Page

983

Collections