Romberg Integration: a Symbolic Approach With Mathematica

dc.contributor.author Yazıcı, Ali
dc.contributor.author Ergenç, Tanıl
dc.contributor.author Altaş, İrfan
dc.contributor.other Mathematics
dc.contributor.other Software Engineering
dc.contributor.other 02. School of Arts and Sciences
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-08T12:53:00Z
dc.date.available 2024-07-08T12:53:00Z
dc.date.issued 2003
dc.description.abstract Higher order approximations of an integral can be obtained from lower order ones in a systematic way. For 1-D integrals Romberg Integration is an example which is based upon the composite trapezoidal rule and the well-known Euler-Maclaurin expansion of the error. In this work, Mathematica is utilized to illustrate the method and the under lying theory in a symbolic fashion. This approach seems plausible for discussing integration in a numerical computing laboratory environment.
dc.identifier.uri https://hdl.handle.net/20.500.14411/6366
dc.language.iso en
dc.subject computer engineering
dc.subject.other mathematics
dc.title Romberg Integration: a Symbolic Approach With Mathematica
dc.type Article
dspace.entity.type Publication
gdc.author.institutional Ergenç, Tanıl
gdc.author.institutional Yazıcı, Ali
gdc.coar.type text::journal::journal article
relation.isAuthorOfPublication 35558a72-4b0b-432f-918e-967c9dcb4f0a
relation.isAuthorOfPublication da7e013c-bd57-4ea1-bfa8-e2b6b92dd61e
relation.isAuthorOfPublication.latestForDiscovery 35558a72-4b0b-432f-918e-967c9dcb4f0a
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections