Romberg Integration: a Symbolic Approach With Mathematica

dc.contributor.author Yazıcı, Ali
dc.contributor.author Ergenç, Tanıl
dc.contributor.author Altaş, İrfan
dc.contributor.other Mathematics
dc.contributor.other Software Engineering
dc.date.accessioned 2024-07-08T12:53:00Z
dc.date.available 2024-07-08T12:53:00Z
dc.date.issued 2003
dc.date.issuedtemp 2003-08-08
dc.description.abstract Higher order approximations of an integral can be obtained from lower order ones in a systematic way. For 1-D integrals Romberg Integration is an example which is based upon the composite trapezoidal rule and the well-known Euler-Maclaurin expansion of the error. In this work, Mathematica is utilized to illustrate the method and the under lying theory in a symbolic fashion. This approach seems plausible for discussing integration in a numerical computing laboratory environment.
dc.identifier.uri https://hdl.handle.net/20.500.14411/6366
dc.institutionauthor Ergenç, Tanıl
dc.institutionauthor Yazıcı, Ali
dc.language.iso en
dc.subject computer engineering
dc.subject.other mathematics
dc.title Romberg Integration: a Symbolic Approach With Mathematica
dc.type Article
dspace.entity.type Publication
relation.isAuthorOfPublication 35558a72-4b0b-432f-918e-967c9dcb4f0a
relation.isAuthorOfPublication da7e013c-bd57-4ea1-bfa8-e2b6b92dd61e
relation.isAuthorOfPublication.latestForDiscovery 35558a72-4b0b-432f-918e-967c9dcb4f0a
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections