Romberg Integration: a Symbolic Approach With Mathematica
| dc.contributor.author | Yazıcı, Ali | |
| dc.contributor.author | Ergenç, Tanıl | |
| dc.contributor.author | Altaş, İrfan | |
| dc.contributor.other | Mathematics | |
| dc.contributor.other | Software Engineering | |
| dc.contributor.other | 02. School of Arts and Sciences | |
| dc.contributor.other | 06. School Of Engineering | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-07-08T12:53:00Z | |
| dc.date.available | 2024-07-08T12:53:00Z | |
| dc.date.issued | 2003 | |
| dc.description.abstract | Higher order approximations of an integral can be obtained from lower order ones in a systematic way. For 1-D integrals Romberg Integration is an example which is based upon the composite trapezoidal rule and the well-known Euler-Maclaurin expansion of the error. In this work, Mathematica is utilized to illustrate the method and the under lying theory in a symbolic fashion. This approach seems plausible for discussing integration in a numerical computing laboratory environment. | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/6366 | |
| dc.language.iso | en | |
| dc.subject | computer engineering | |
| dc.subject.other | mathematics | |
| dc.title | Romberg Integration: a Symbolic Approach With Mathematica | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Ergenç, Tanıl | |
| gdc.author.institutional | Yazıcı, Ali | |
| gdc.coar.type | text::journal::journal article | |
| relation.isAuthorOfPublication | 35558a72-4b0b-432f-918e-967c9dcb4f0a | |
| relation.isAuthorOfPublication | da7e013c-bd57-4ea1-bfa8-e2b6b92dd61e | |
| relation.isAuthorOfPublication.latestForDiscovery | 35558a72-4b0b-432f-918e-967c9dcb4f0a | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | d86bbe4b-0f69-4303-a6de-c7ec0c515da5 | |
| relation.isOrgUnitOfPublication | 9fc70983-6166-4c9a-8abd-5b6045f7579d | |
| relation.isOrgUnitOfPublication | 4abda634-67fd-417f-bee6-59c29fc99997 | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |