Romberg Integration: A Symbolic Approach with Mathematica

dc.contributor.authorYazıcı, Ali
dc.contributor.authorErgenç, Tanıl
dc.contributor.authorAltaş, İrfan
dc.contributor.otherMathematics
dc.contributor.otherSoftware Engineering
dc.date.accessioned2024-07-08T12:53:00Z
dc.date.available2024-07-08T12:53:00Z
dc.date.issued2003
dc.date.issuedtemp2003-08-08
dc.description.abstractHigher order approximations of an integral can be obtained from lower order ones in a systematic way. For 1-D integrals Romberg Integration is an example which is based upon the composite trapezoidal rule and the well-known Euler-Maclaurin expansion of the error. In this work, Mathematica is utilized to illustrate the method and the under lying theory in a symbolic fashion. This approach seems plausible for discussing integration in a numerical computing laboratory environment.
dc.identifier.urihttps://hdl.handle.net/20.500.14411/6366
dc.institutionauthorErgenç, Tanıl
dc.institutionauthorYazıcı, Ali
dc.language.isoen
dc.subjectcomputer engineering
dc.subject.othermathematics
dc.titleRomberg Integration: A Symbolic Approach with Mathematica
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication35558a72-4b0b-432f-918e-967c9dcb4f0a
relation.isAuthorOfPublicationda7e013c-bd57-4ea1-bfa8-e2b6b92dd61e
relation.isAuthorOfPublication.latestForDiscovery35558a72-4b0b-432f-918e-967c9dcb4f0a
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublicationd86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files