Performance assessment of tripping and drilling operations controllers on an experimental drilling rig prototype

Research Projects

Organizational Units

Organizational Unit
Mechatronics Engineering
(2002)
The Atılım University Department of Mechatronics Engineering started its operation in 2002 as the Education Program in Mechatronics Engineering holding a “department” status in Turkey. In addition, it is the first and the only institution for mechatronic engineering education to obtain a MÜDEK (Association for Evaluation and Accreditation of Engineering Programs) accreditation for a duration of 5 years. Mechatronics engineering is a discipline of engineering that combines mechanical, electrical and electronic engineering and software technologies on a machine or a product. These features place the field on a pedestal in today’s industry. The education at our department is also backed by substantial laboratory opportunities. Our students create interesting products of their skills and creativity for their dissertation projects. Should they wish to do so, our students may also proceed with a double-major program in the fields of Computer Engineering, Electrical - Electronics Engineering, Industrial Engineering, or Mechanical, Automotive or Software Engineering. Upon their demands, the Department of Mechatronic Engineering also offers a “Cooperative Education” program implemented in coordination with industrial institutions. Students receiving a portion of their training at industrial institutions and prepare for professional life under this program
Organizational Unit
Department of Mechatronics Engineering
Our purpose in the program is to educate our students for contributing to universal knowledge by doing research on contemporary mechatronics engineering problems and provide them with design, production and publication skills. To reach this goal our post graduate students are offered courses in various areas of mechatronics engineering, encouraged to do research to develop their expertise and their creative side, as well as develop analysis and design skills.
Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

Oil well drilling towers have different operating modes during a real operation, each mode involves certain external disturbances and uncertainties. Performance evaluation of robust or adaptive Cascade PID, Active Disturbance Rejection, Loop Shaping, Feedback Error Learning, and Sliding Mode torque controllers, during the tripping and drilling operations, and their practical comparison are studied and evaluated by constructing a drilling rig prototype. The modeling of the experimental setup is extracted by mathematical modeling, and system identification. The practical performance of the controllers and their stabilities against the uncertain forces including the parametric uncertainties and the external disturbances are studied during the operations, by loading and unloading a disturbance weight. It has been shown that the effects of uncertain forces are successfully eliminated by the controllers. The Loop Shaping controller has the best performance among all the designed controllers, and all of them roughly consume the same control energy. A desired speed profile is designed to shape the vertical speed reference during the tripping operation, then its effect on the system behavior is analyzed to prevent the slackening problem in the drilling cable. Also, the behavior of control architectures in two modes of autonomous drilling is studied and analyzed. By analyzing and optimizing the performance efficiency in a controlled environment, along with enhancing the performances of the controllers, what we learn in this research could presumably be applicable in the field to have an accurate and safe operation.

Description

Naseri, Babek/0000-0001-6007-3875; Nobahar, Amir/0000-0002-8248-4963

Keywords

Motion control of drilling tower, Tripping and drilling operations, Autonomous drilling, Cascade PID Controller, Active disturbance rejection controller, Loop shaping controller, Feedback error learning controller, Sliding mode controller

Turkish CoHE Thesis Center URL

Fields of Science

Citation

1

WoS Q

Scopus Q

Source

Volume

226

Issue

Start Page

End Page

Collections